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Abstract
The recent emergence of Neuro-Symbolic Agent
(NeSA) approaches to natural language-based in-
teractions calls for the investigation of model-based
approaches. In contrast to model-free approaches,
which existing NeSAs take, learning an explicit
world model has an interesting potential especially
in the explainability, which is one of the key selling
points of NeSA. To learn useful world models, we
leverage one of the recent neuro-symbolic architec-
tures, Logical Neural Networks (LNN). Here, we
describe a method that can learn neuro-symbolic
world models on the TextWorld-Commonsense set
of games. We then show how this can be improved
further by taking inspiration from the concept of
proprioception, but for conversation. This is done
by enhancing the internal logic state with a mem-
ory of previous actions while also guiding future
actions by augmenting the learned model with con-
straints based on this memory. This greatly im-
proves the game-solving agents performance in a
TextWorld setting, where the advantage over the
baseline is an 85% average steps reduction and
×2.3 average score.

1 Introduction
Recent emergence of neuro-symbolic (NS) approaches in-
clude natural language-based sequential decision mak-
ing [Kimura et al., 2021c; Chaudhury et al., 2021; Kimura
et al., 2021a; Kimura et al., 2021b]. They propose a model-
free approach of learning a logical policy, and tested with
interactive-text games [Narasimhan et al., 2015; Côté et al.,
2018; Hausknecht et al., 2020; Murugesan et al., 2021],
which have become an interesting benchmark in the intersec-
tion of natural language processing and sequential decision
making. NS approaches give the direct explainability of what
is learned and allow natural integration of external knowledge
as logic. Despite that, existing NS approaches are of model-
free reinforcement learning (RL) but it would be useful if
we could have model-based approaches that are potentially
more sample efficient and can reach higher cumulative re-
wards as shown by neural world models [Hafner et al., 2019;
?]. In contrast to these, a logical world model learned using

Figure 1: Simplified overview of the problem setting and agent. The
observation from the environment describes the state in a natural
language form. Our agent first uses a semantic parser to produce
an estimate of the logical state. We then use this in a model-based
RL module that learns a logical world model to plan actions to be
taken. We augment the RL agent with a specific memory component
inspired from proprioception.

NS approaches would allow an agent to use logical reasoning
which enables us to obtain a trace of logical steps for better
explainability. In fact, several sets of benchmarks and game
environments have been proposed such as TextWorld [Côté et
al., 2018], Jericho [Hausknecht et al., 2020] and TextWorld
Commonsense (TWC) [Murugesan et al., 2021], which are
far too complicated to solve without reasoning and common
sense, compared to the original game setting [Narasimhan et
al., 2015]. Also, existing implementations of NS agents do
not start from natural language but instead use the logical
facts provided from the game engines.

In this paper, we focus on the problem of learning logical
world models in NS methods. The main research question to
be addressed is then how we can learn such models for text-
based games using a general semantic parser. As a state-of-
the-art interactive-text agent, GATA [Adhikari et al., 2020]
constructs belief graphs used to enhance deep RL methods.



In contrast to understanding the world state in a latent space,
we want to explicitly use the logical world models to plan op-
timal action sequences and to provide direct explainability of
the decision making policy. For the explainability purpose,
we leverage general semantic parsing, following one of the
early work constructing knowledge graphs [Ammanabrolu
and Riedl, 2019].

An overview of our proposed method is depicted by Fig-
ure 1. The left side depicts that the environment state can
be sufficiently approximated as a set of logical facts. Con-
tinuing in the top right, the agent can get textual observa-
tions of the environment. We assume that we have a semantic
parser [Drozdov et al., 2022] that converts these observations
into a logical form. In the real situation the semantic parsing
is good, but won’t be perfect, hence we require that our agent
should be capable of handling noisy logical states. From such
states, our agent should produce suitable actions for accom-
plishing its tasks in the environment.

The main contributions of this paper are: the proposal of
a novel world model-learning method with a neuro-symbolic
approach, and its experimental results with TWC.

2 Problem Definition

Text-based games are often modelled with the RL problem
setting in mind as Partially Observable - Markov Decision
Processes (PO-MDP) [Côté et al., 2018; ?]. As a first ap-
proach, we add an assumption - that the semantic parser can
remove partial observability and that we are dealing with an
MDP. At each time step the agent uses the information in a
state, s, to take an action, a, which transitions the state to the
new state, s′ according to the state transition function T such
that s′ = T (s, a). While acting in this environment the agent
also gets rewards, r, according to an unknown reward func-
tion, R, such that r = R(s, a). In the model-free RL setting,
the agent learns a policy or value function which directly gov-
erns the actions. Here, we are interested in the model-based
RL setting where the agent learns a model of the world which
usually consists of both T and R. This model can then be
used with planning methods to find the optimal actions.

Based on the classical model-based RL setting, our prob-
lem has two more important specifications. First, we as-
sume that our environment is relational, similar to [Lang et
al., 2012]. This means that all actions and states are com-
posed of relational logic. They may be in the propositional
form but there must be a corresponding lifted form that has
a consistent meaning. For example, the propositional state,
on(book,table) can be abstracted or lifted into on(x,y) with
predicate, on, and the variables, (x, y). The first assump-
tion is that all states and actions handled by the agent are in
this relational lifted form. This assumption can be handled
as a design specification of the semantic parser. The second
assumption is that the goal state is given. This is a weaker
assumption that is already used in current RL research, the
so-called goal-conditioned RL. Here, it allows us to concen-
trate only on learning T since R is no longer required for
planning when we are given the goal state.

3 Learning Logical World Models
The problem of learning logical rules that explain a given
set of logical examples can be cast into the general problem
called Inductive Logic Programming (ILP) [Muggleton and
De Raedt, 1994]. What needs to be done is then to cast our
relational model-based RL problem into ILP form. But be-
fore going into that detail, it is important to note that relying
on classical ILP has significant failings. In particular, it is not
well suited to noisy data to the extent that a single erroneous
data point may cause the whole system to fail.

However, newer methods that leverage neural networks
have shown great promise on working even with noisy
data [Evans and Grefenstette, 2018]. These are sometimes
called neural ILP, differentiable ILP or neuro-symbolic ILP.
These advances are the main impetus for us to research on the
learning of logical world models.

We may use any such ILP method that is noise-resistant
but here we use the Logical Neural Network (LNN) [Riegel et
al., 2020] as a Neuro-Symbolic AI framework. It is an end-to-
end differentiable system that enables scalable gradient-based
learning and it has a real-valued logic representation of each
neuron that enables logical reasoning [Riegel et al., 2020].

Action ILP with LNN
Now, getting back to the task of expressing our relational
model-based RL problem as ILP, we first gather data samples
which are triples of lifted logic, (s, a, s′). This is gathered by
using an exploration policy to generate actions. This data col-
lection may be done in an offline or online RL setting but we
assume that a large enough batch is available in the online RL
setting before we start the learning procedure. Here, we used
a policy that uniformly randomly samples the action space but
better exploration methods may be used, such as that outlined
in [Lang et al., 2012]. The improvement of better exploration
is usually seen in data efficiency leading to faster convergence
but using a sufficiently large amount of data won’t change the
benchmark scores on the TWC environment. We believe that
a more rigorous treatment on the exploration of exponential
but structured (logical) spaces merits its own research topic.

Given a batch of data samples, the learning procedure must
produce an estimate of T . This T will be the hypothesis to be
generated by our ILP. This is a set of logical rules that best fits
the data. To make learning more efficient we need to narrow
down the definition of T . Because we are ultimately inter-
ested in using T for planning, we define it as a set of plan-
ning operators where each one is a quadruple of (α, β, γ, σ).
Each element is a set of logical conditions. The conditions
(α, β) are pre-conditions where α are conditions that must
be true for the action to be executable, β are ones that must
be false. The conditions (γ, σ) are post-conditions where γ
are ones made true by the action and σ are ones made false.
These conditions are the lifted logic statements that comprise
a state, s, and the set of all possible conditions is P .

We model each of the operator elements as an LNN con-
junction operator whose inputs are P . The LNN learn-
ing procedure can learn weights for each of these inputs
that correspond to real-valued logic [Riegel et al., 2020;
?]. For the LNNs of α and β, the inputs are given the cor-
responding logical values of the conditions in s. The output



is true when action, a, corresponds and s ̸= s′ otherwise it is
false. For the LNNs of γ and σ, the inputs are given the log-
ical values corresponding to the difference in the conditions
of s and s′ such that γ are the the conditions made true and σ
those that are made false. The output is true when action, a,
corresponds otherwise it is false.

Using these inputs and outputs to the LNN, gradient-based
optimization can be used for supervised learning [Riegel et
al., 2020; ?]. When learning converges, we have a set of
weights for each of the corresponding elements. These may
be interpreted as probabilistic transitions but here we simply
threshold them and maintain a deterministic transition sys-
tem for our final estimate of T . Given this operator transition
model and the goal, we can be in any state and use classical
planning methods to find a series of actions to reach the goal.

Conversational Proprioception as Memory-Based
Constraints
To further enhance our logical model, we take inspiration
from the concept of proprioception [Tuthill and Azim, 2018],
which is the sensation of body position and movement crit-
ical to human experience, while it is typically absent from
conscious perception. This concept is commonly used in im-
itation learning [Torabi et al., 2019] and in robotics [Cong et
al., 2022]. In these domains, the type of sensors clearly dis-
tinguish the internal state measurement (proprioception) and
external state measurement (perception). Combining both in-
formation sources is crucial to improving an agent’s world
model. We take inspiration from this to improve our logical
world model estimate for text-based games or other tasks with
logical state representations.

In general, proprioception is a prediction of the next state,
s′ = T̂ (s, a), based on the existing knowledge of one’s body
dynamics in the form of the transition model estimate, T̂ , the
current state, s, and the action taken, a. This additional in-
formation is crucial to help us disambiguate and better locate
the next state. For our task where T is a logical model, we
propose to augment our learned T with a set of propriocep-
tion rules, ϵ(s, a), such that our T will now be defined as
(α, β, γ, σ, ϵ(s, a)). For our agent, we define ϵ very generally
such that it only consists of 2 rules. First, it tracks state-action
pairs that were already tried and augments the state with this
information. This serves as a type of memory added onto the
state. Second, it adds a precondition onto the transition mod-
els. This serves as a type of constraint on the actions. For
our TWC agent, we defined preconditions that prevent state-
action pairs from repeating. These 2 rules are general enough
to apply to any TWC environment and possibly beyond to
other conversational agents in general. We leave the design
of further proprioception rules as a possible future work.

4 Experiment and Discussion
For evaluating the quality of the world model learned, we
first qualitatively analyze the learned action models. Then
we measure the interactive-text agent performance against
a quantitative TextWorld benchmark. In this paper, we ex-
periment on the TextWorld Commonsense (TWC) set of

games [Murugesan et al., 2021] with the same experimental
settings.

Once we have a logical world model, we can use it with a
planner. Here, we use the Fast-Downward systsem [Helmert,
2006]. For convenience, we convert the learned logical transi-
tion model into the PDDL (Planning Domain Definition Lan-
guage) format by combining (α, β, ϵ) into the preconditions
and (γ, σ) into the effects. We also augment the state with
ϵ(s, a).

Learned Models
We confirmed that the world models were meaningfully
learned by any of model-based approaches. Figure 2 shows
example learned action models in a converted PDDL form
for an action insert into (insert XX into YY) by model-based
approaches from AMR-based logical facts. For our results,
we first show some examples of the learned rules in our log-
ical world model in Figure 2. Here, we can visually inspect
the validity of the rules. For example with the left case, the
effect would be that the object v0 is at/in/on the container
v1 (has location-2) but now it is no longer in the inventory
(carry-1). This level of explainability is inherent in logical
models although it requires careful inspection.

The effect of proprioception can be seen in the right-hand
side of Figure 2. The predicate of tried insert into is from
an AMR-based predicate insert into but with the intention
modality of the agent, which is encoded in first-order logic.
This recognition of an already-performed action insert into
should contribute to avoiding repeatedly performing failed
actions.

TWC Performance
It would be more interesting if we take altogether to see if the
learned rules allow us to plan optimal actions in the world. To
answer this, we present our results in Table 1. By running our
complete framework, we can quantitatively compare against
the benchmarks in [Murugesan et al., 2021]. We can also see
the effects of the important components of our agent.

Table 1 compares seven different methods/configurations
corresponding to each row. The first row is a deep-learning-
only method which is the best from the original benchmark
in [Murugesan et al., 2021]. The second and third rows are
model-free neuro-symbolic methods. The fourth row is a
planning result without any learning by using an ideal world
model (assumed given) and access to (noiseless) logical game
states. This serves as an upper bound for comparison only
since having access the the ideal model and states is diffi-
cult or impossible in other applications. The fifth row is a
model-based RL method given the ideal game-engine facts
(equivalent to a perfect, noiseless semantic parser). The sixth
row is our model-based RL method with a practical AMR-
based semantic parser but without proprioception. Finally,
the seventh row is our complete model-based RL method with
a practical AMR-based semantic parser and proprioception
module (memory-based constraints). In summary, the first
four rows serve as comparison points and the last three rows
shows the result of our method. Note that we have additional
assumptions differing from the deep-learning-only setting of
the original setup and we note these in the table as what type



Semantic parsing Handicap
Easy Medium Hard

Valid Test Valid Test Valid Test

TWC agent (DL-only)
[AAAI 2021]

Word embedding

(these are common)
Admissible action
Inventory
Curated Common Sense

17.65 ± 3.62
85% ± 7%

18.00 ± 3.24
87% ± 5%

37.18 ± 4.86
72% ± 7%

43.08 ± 4.13
54% ± 17%

49.36 ± 7.50
46% ± 10%

49.96 ± 0.00
22% ± 0%

Model-free NeSA
based on [EMNLP 2021]

Skipped Game-engine facts -
15.00
100%

-
28.60
100%

- -

Model-free NeSA
(REINFORCE)

AMR-based facts - -
32.28 ± 3.24
63% ± 5%

-
43.68 ± 5.36
38% ± 25%

-
49.48 ± 1.04
28% ± 13%

Planning
(Model-based NeSA)

Skipped
Action transition
Game-engine facts

2.4
100%

2.4
100%

4.4
100%

3.6
100%

13.6
100%

14.0
100%

Model-based NeSA
(Learned action transition)

Skipped Game-engine facts
2.4 ± 0.0
100%

2.4 ± 0.0
100%

4.4 ± 0.0
100%

3.6 ± 0.0
100%

13.6 ± 0.0
100%

28.4 ± 0.0
60.6%

Model-based NeSA AMR-based facts -
21.4 ± 0.0
57.1%

21.2 ± 0.0
42.9%

31.6 ± 0.0
38.5%

31.6 ± 0.0
50.0%

42.8 ± 0.0
20.6%

42.8 ± 0.0
24.2%

Model-based NeSA
w/ proprioception

AMR-based facts -
3.6 ± 0.0
100%

4.0 ± 0.0
100%

7.6 ± 0.0
100%

5.6 ± 0.0
100%

33.2 ± 0.0
64.7%

42.8 ± 0.0
24.2%

Table 1: Scores on the TextWorld Commonsense (TWC) set of games. Each cell contains 2 rows of metrics, each showing the average and
standard deviations reported when available. The top row indicates the number of steps taken by an agent to finish the game. Lower is better
because we want to reach the goal as fast as possible. The environment only allows a maximum of 50 steps. The bottom row is a normalized
game score which is computed by taking the rewards obtained by the agent divided by the maximum rewards obtainable. Higher is better,
where 100% means that the agent solved all the games in the benchmark set.

of semantic parsing and handicap are used. The TWC games
are categorized into Easy-Medium-Hard with a validation and
testing set for each as shown in the columns.

Comparing the result of our full method (last row) against
current methods (first 3 rows) shows a significant improve-
ment across the board. This shows the strength of the model-
based NeSA framework against purely deep learning methods
or the previously published model-free NeSA.

To see the effect of each component we can compare the
results of the last four rows. Comparing the model-based
NeSA with ideal semantic parsing (third to last row) against
the planning upper bound, we can see that we can perfectly
solve all except the test set of the hard games. After investi-
gating, we found an interesting limitation wherein novel pred-
icates appear in the test set that do not appear in any of the
training or validation set. This is a current limitation of our
system. Since we do not do any online learning during the
test phase, there is no way to take these novel predicates into
account. The significant effects of AMR-originated noise or
lack of information can be seen by comparing the second-to-
last and third-to-last rows. Here we see a significant degreda-
tion across metrics and datasets. However, the performance
is still comparable or often better than the deep-learning-only
benchmark of the first row. Comparing the last row (full
method with proprioception module) and second-to-last row
shows that we can recover most of the performance. We can
also see that the metrics are competitive to the model-based
approach from game-engine provided logical facts (3rd-last
row). This shows the effectiveness of adding the propriocep-
tion module comprising both the memory and memory-based
constraints.

5 Conclusion
We proposed a model-based RL agent for text-based games
which comprises of a semantic parser producing logical
states, a neuro-symbolic ILP module for learning logical
world models, and an off-the-shelf planning system to pro-

(:action insert_into
:parameters (?v0 ?v1)
:precondition
(and

(not (tried_insert_into ?v0 ?v1))
(carry-1 ?v0)
(not (has_location-2 ?v0 ?v1)))

:effect
(and

(has_location-2 ?v0 ?v1)
(not (carry-1 ?v0))
(tried_insert_into ?v0 ?v1)))

(:action insert_into
:parameters (?v0 ?v1)
:precondition
(and

(carry-1 ?v0)
(not (has_location-2 ?v0 ?v1)))

:effect
(and

(has_location-2 ?v0 ?v1)
(not (carry-1 ?v0))))

Figure 2: Examples of the learned action models

duce optimal actions in the game world. We augment this
with a proprioception-inspired module comprising both the
memory and memory-based constraints. Our results and ex-
periments show that each of the components are essential and
our model-based NeSA agent outperforms previous bench-
marks on the TextWorld Commonsense set of games.
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