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Abstract
In this paper, we propose a reinforcement learn-
ing world model that leverages the strengths of
the state-of-the-art object-centric models. Our ap-
proach combines symbol-like object-centric repre-
sentations, known as slots, with action represen-
tations to accurately predict the next state and re-
construct the current state of the environment. A
key aspect of our method is the composition of
actions and objects using an autoregressive trans-
former, which enables the model to efficiently cap-
ture the complex interactions between objects and
actions in a given context. We present a compre-
hensive evaluation of our approach in various envi-
ronments, demonstrating that our proposed method
outperforms competing models. The source code
of our model and training/testing scripts are pub-
licly available at https://anonymous.4open.science/
r/compas-1E03.

1 Introduction
The ability to generalize compositionally is the key to gen-
eralizing to new problems and understanding new concepts
with limited experience [Lin et al., 2023]. The difficulty in
compositional generalization is caused by the so-called bind-
ing problem [Greff et al., 2020] – the inability of modern
artificial neural networks to dynamically and flexibly bind in-
formation distributed over the network, which arises in the
process of learning on unstructured input data.

A possible solution to this problem could be the use of
symbol-like representations. Such representations can be slot
representations [Locatello et al., 2020], where the input data
is not encoded by a single latent representation, but by a
set of such representations (slots). Slots compete with each
other to describe a portion of the input data. Such represen-
tations have been successfully used for object-centric tasks
such as set property prediction [Locatello et al., 2020] and
object detection [Locatello et al., 2020] in an image, learning
visual dynamics from video [Wu et al., 2022], image genera-
tion [Singh et al., 2022], and unsupervised object-centric rep-
resentation learning for real-world data [Seitzer et al., 2022].

World models serve as core components in a wide vari-
ety of machine learning tasks, ranging from robotics and au-
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Figure 1: Comparative overview of three approaches to combine ac-
tions and slot representations: a) the conventional method, where
each slot is combined with the action by addition or concatenation,
followed by processing through a multilayer perceptron (MLP) for
slot updating; b) a more complex approach, where actions are bound
to slots through cross-attention (either hard or soft), and the updated
slots are subsequently used for task-specific needs; c) our method,
where slot and action representations are jointly fed to an autore-
gressive transformer, which then predicts the tokens of the corre-
sponding image. Our method facilitates efficient and dynamic scene
understanding by explicitly integrating action information into the
object-centric world model.

tonomous vehicles to game AI and video synthesis [Wu et
al., 2023a; Burgard et al., 2016; Ha and Schmidhuber, 2018].
These models aim to represent the environment’s complexi-
ties and dynamics to enable agents to understand, predict, and
interact with their surroundings effectively. However, cre-
ating world models that can handle high-dimensional, con-
tinuous, and time-varying data remains a challenging task.
Traditional world models often represent the environment as
a whole without distinguishing between individual objects.
These models struggle to capture the intricate relationships
between different objects and their evolving dynamics over
time. They often fail to generalize well across different tasks
and struggle with scalability when faced with complex scenes
with multiple interacting objects.

Object-centric world models offer several advantages over
traditional methods. First, they allow for more interpretable
representations, since the state of the world is described in
terms of identifiable objects and their properties. Second,
they can handle complex scenes with multiple objects more
efficiently, since changes in one object do not necessarily af-
fect the representation of others. Third, object-centric mod-
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els can be more data efficient because they can potentially
reuse learned knowledge about one an object across different
scenes or tasks.

In this paper, we propose a novel approach COMPAS
(COMPose Actions and Slots) to encode these dynamics, fo-
cusing on object-centric world models that integrate actions
and slots. Our model takes advantage of the power of dis-
crete variational autoencoders (dVAEs) [Van Den Oord et al.,
2017], slot attention mechanisms [Locatello et al., 2020], and
autoregressive transformers [Vaswani et al., 2017] to produce
robust and versatile representations of complex scenes. Our
approach, as illustrated in Figure 1, differs from other existing
methods in its joint treatment of actions and slot representa-
tions by the autoregressive transformer.

Conventional models, shown in Figure 1a), typically com-
bine the action with each slot by either addition or concate-
nation, which is then passed through a multilayer perceptron
(MLP) to update the slots. This approach, while relatively
straightforward, may not fully capture the complex relation-
ships between actions and objects in a scene. A more ad-
vanced approach, depicted in Figure 1b), binds the action to
the slots through a cross-attention mechanism, either hard or
soft. This enables the model to pay differential attention to
each slot depending on the action.However, this method still
may not fully encapsulate the dynamics of a complex scene.
In contrast, our method, illustrated in Figure 1c), passes the
slot representations along with the action representation to an
autoregressive transformer. This transformer then generates a
prediction of the tokens of the corresponding image. By inte-
grating action information directly into the model and using
a transformer for prediction, our method is able to capture
complex scene dynamics and generate accurate predictions.
This approach fundamentally differs from other methods in
its explicit integration of action information and its use of an
autoregressive transformer for prediction.

2 Related works
2.1 World models
World models is the one of the most important research areas
for sample-efficient reinforcement learning (RL). The main
purpose of world models is to represent the environment in
the latent state and predict the next latent states from the ac-
tion. The dynamic prediction of next latent states is the one
central problem in world models because it directly affects
the quality of reinforcement learning algorithms. One ap-
proach is to use graph structures as in [Silver et al., 2016;
Silver et al., 2017; Schrittwieser et al., 2019; Hubert et al.,
2021]. These models represent states as nodes and transitions
as edges in the graph. The disadvantage of graph world mod-
els is that they cannot work efficiently with continuous action
spaces.

Another approach is to predict dynamics through recur-
rent neural networks (RNN). This family of models [Ha and
Schmidhuber, 2018; Hafner et al., 2018; Hafner et al., 2020;
Wu et al., 2023a] is able to solve complex environments, from
Minecraft to robotics tasks. The most recent advances are re-
lated to the use of transformers [Micheli et al., 2023]. It al-
lows to train world models faster because of input paralleliza-

tion. But the disadvantage of these models is higher memory
consumption. One of the other challenges in world models
is state representation. A possible solution to this problem is
to represent state by objects within a scene. This opens an
opportunity for algorithms to reason about object interaction.
Thus, there is a need for an algorithm that can extract the ob-
jects states from the scene.

2.2 Unsupervised object-centric representation
learning

Many modern object-centric representation models are based
on the slot attention module [Locatello et al., 2020]. It im-
plements an iterative attention mechanism, based on soft k-
means clustering, for autoregressive slots refinement. Recent
improvements of this method are based on better optimiza-
tion [Chang et al., 2022], learnable slots initialization [Jia et
al., 2023] or slots structure augmentation [Singh et al., 2023].
However, these methods use simple convolutional neural net-
work (CNN) encoders and decoders, which result in worse
image reconstructions. Authors of the SLATE [Singh et al.,
2022] proposed to use discrete latent space, which is ex-
tracted from the image by dVAE [Van Den Oord et al., 2017].
The computed slots are then passed through a transformer that
predicts the latent token. This token is used in the dVAE de-
coder for image reconstruction. This results in better quality
reconstructions than other models.

2.3 Object-centric world models
Previous object-centric world models have used other al-
gorithms, than slot-attention for objects states extraction.
SQAIR [Kosiorek et al., 2018] uses a special detection
model to detect objects in the scene and track their trajec-
tories through RNNs. SCALOR [Jiang et al., 2020] and
SILOT [Crawford and Pineau, 2020] are able to scale the
number of objects in SQAIR due to parallel inference mech-
anism. The STOVE [Kossen et al., 2019] introduced a graph
neural network (GNN)[Scarselli et al., 2009] for dynamics
prediction and per-object interactions.

One of the notable world models is the Generative Struc-
tured World Model (G-SWM) [Lin et al., 2020]. It treats fore-
ground objects and background separately by encoding them
into two different latent vectors. For next state prediction, it
uses two separate RNN, one for foreground latent vector, the
other for background. One of the limitations of this model is
that it doesn’t consider actions taken in the environment when
predicting future trajectories.

Another important approach is contrastively structured
world models (C-SWM) [Kipf et al., 2020]. It uses con-
trastive loss function on slots level, instead of basic image
reconstruction loss. The model predicts the trajectory using
GNN. Some notable improvements of the C-SWM are neg-
ative sampling [Biza et al., 2021], which improves the loss
function by either selecting negative samples from different
time steps in the same episode or the same time step in dif-
ferent episodes. Another improvement is two types of action
attention [Biza et al., 2022]. Soft attention uses simple self-
attention with a single head of transformers [Vaswani et al.,
2017]. Hard attention calculates the expectation of all possi-
ble assignments to objects and takes the index of the object



with the highest probability and maps the action to that ob-
ject.

The latest model – SlotFormer [Wu et al., 2023b] uses
ether SLATE [Singh et al., 2022] or Slot-Attention [Locatello
et al., 2020] to extract slots from a sequence of images or
video. The slots are then passed through a transformer to pre-
dict future frames of the video. This approach has achieved
better results in dynamics prediction than previous models.
However, the main limitation of this method is that, unlike
our approach, it cannot work efficiently in action-dependent
environments.

3 Method
Our method draws inspiration from the SLATE [Singh et al.,
2022] model, which has gained prominence due to its supe-
rior ability to construct meaningful representations of com-
plex scenes. SLATE combines the best of object-centric
representation learning, robust composition-based general-
ization, and effective representations. Its decoder is partic-
ularly robust, adept at handling new slot configurations and
producing accurate compositions, a feature that enhances its
adaptability in complex RL environments. Moreover, it ex-
cels at zero-shot image generation, a critical capability for
diverse and unpredictable RL scenarios. SLATE also ensures
global consistency in its image compositions, a factor that
contributes to the stability and reliability of the RL world
model. Finally, its attention maps effectively localize individ-
ual objects, enhancing its object-centric capabilities, which is
crucial for RL tasks that require precise object interaction and
manipulation.

The proposed approach involves a three-stage process of
image encoding, slots representation extraction, and condi-
tional generation with an autoregressive transformer. Our
proposed method is visually summarized in Figure 2.

3.1 Observation encoding
Our first step is to encode the input image (observation xt)
into a discrete feature map zt, a process carried out by a dis-
crete variational autoencoder (dVAE) [Van Den Oord et al.,
2017]. The dVAE converts high-dimensional input data xt

into a lower-dimensional representation e extracting essential
features from the frame:

e = encoder(xt). (1)

These features are then discretized by transforming the
continuous latent space into a discrete one via approximate
sampling using Gumbel-Softmax [Jang et al., 2016]:

zt ∼ GumbelSoftmax(e, τ). (2)

We slowly decrease the temperature parameter τ from 1 to
0.1 during training. This process enables more straightfor-
ward manipulation of the image data in the subsequent stages
of our model. The dVAE also includes the decoder part. We
minimize the Mean Squared Error (MSE) between input and
reconstructed images during training:

Lrec = MSE(xt, x̂t), x̂t = decoder(zt). (3)

3.2 Slots representation extraction
Next, we use a slot attention [Locatello et al., 2020] mech-
anism to derive object-centric representations from the dis-
cretized feature map zt. TThis mechanism works by itera-
tively assigning each token to slots that are randomly sampled
from a normal distribution with trainable parameters. This is
done using a special cross-attention mechanism and a recur-
rent neural network, GRU [Chung et al., 2014]. This process
generates an abstract scene representation that focuses on a
set of individual representations rather than the entire scene.

slots ∼ N (µ,Σ), M =
1√
D
k(zt)q(slots)T , (4)

attni,j =
eMi,j∑K
j=1 e

Mi,j

, Wi,j =
attni,j∑N
i=1 attni,j

, (5)

updates = WT v(zt) ∈ RK×D, (6)

slots = GRU(input=updates, hidden=slots), (7)
where µ, Σ are trainable parameters, and Σ is a diagonal
covariance matrix; K is a number of slots; N – number of
tokens zt; D – slot dimensionality; k, q, v are trainable
matrix projections.

This process allows us to handle each object in the scene
independently, facilitating object-level transformations in the
subsequent transformer stage.

3.3 Conditional generation with an autoregressive
transformer

Finally, the slot representations and an action representa-
tion are combined and fed into an autoregressive trans-
former [Vaswani et al., 2017]. The autoregressive trans-
former then conditionally generates a prediction of the source
tokenized feature map. This generation occurs in two
regimes, based on the nature of the action representation. In
both cases, we use the cross-entropy of the prediction of each
successive token as the training signal.

1. Non-action regime: If the action representation is an
auxiliary embedding that represents a non-action (zero-
action) vector, the task of the transformer is to predict
the tokens of the frame at the current timestamp. This
is essentially a “do nothing” action, and the transformer
should ideally reproduce the original input.

ẑi,t = Transformer(ẑ<i,t; slots; zero-action), (8)

Lt = CrossEntropy(zt, ẑt) (9)

2. Agent-action regime: If the action is a representation of
an action made by an agent, the transformer aims to pre-
dict the tokens of the frame at the next timestamp. This
requires the model to understand the dynamics of the
scene and to predict how the agent’s action will change
the scene.
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Figure 2: Overview of the proposed method. This figure illustrates the three-stage process: image encoding into a discretized feature map
using a dVAE, extraction of object-centric slot representations through a slot attention mechanism, and conditional generation of source
tokenized feature map predictions using an autoregressive transformer, conditioned on the slot representations and an action representation.
The two regimes of operation – zero-action and agent-action – are also depicted.

ẑi,t+1 = Transformer(ẑ<i,t+1; slots; action), (10)

Lt+1 = CrossEntropy(zt+1, ẑt+1) (11)

3.4 Loss function
When computing the loss function (Formula 12), we weight
Lt and Lt+1 in favor of Lt+1 since it is more important for
the world model to make accurate predictions for the follow-
ing timestamps. At the same time, Lt ensures the better dis-
entanglement of objects to slots.

Loss = Lrec + 0.2Lt + 0.8Lt+1 (12)
The main blocks of the model are trained separately.

Namely, dVAE receives training signal only from the Lrec

component, while transformer and slot attention get gradient
updates regarding Lt and Lt+1.

4 Experiments
In our experiments, we primarily compare our model to
Contrastive Structured World Models (C-SWM) [Kipf et
al., 2020] and its attention-based modifications [Biza et al.,
2022], which we consider to be our main competitors in the
field of object-centric world modeling. For a comprehensive
overview of the hyperparameters used in our experiments, we
refer the reader to the Appendix A.

Our research focuses on the precision training of our model
to predict a single step into the future, an aspect that signif-
icantly enhances the efficiency of our methodology. Upon
evaluation, we highlight the remarkable ability of our system
to extrapolate accurate predictions beyond the range initially
encountered during the training process.

4.1 Environments
To evaluate the effectiveness of our proposed model, we per-
form experiments using trajectories randomly sampled from
two environments: Atari Pong and Causal World [Ahmed et
al., 2020].

Atari Pong is a classic video game environment that pro-
vides a relatively simple setting for our experiments. It is a
two-dimensional environment with a discrete action space. In
this game, the agent must learn to control a paddle to hit a ball
and prevent it from reaching the edge of the screen. Despite
its simplicity, Pong presents a reasonable challenge in terms
of predicting the dynamics of the ball and paddle based on
the current state and actions.

At the other end of the complexity spectrum, we use
the Causal World environment [Ahmed et al., 2020], which
presents a much more complicated and challenging scenario.
Causal World is a physically simulated environment with
three robotic arms interacting with objects. It provides a con-
tinuous action space and requires the model to understand
complex physical interactions and the impact of nuanced ac-
tions on the state of the world.

By conducting experiments in both environments, we aim
to demonstrate the versatility and scalability of our model –
from simpler, discrete action environments like Pong to more
complex, continuous action environments such as Causal
World.

4.2 Metrics
Following the evaluation setup of [Biza et al., 2022] we pre-
dict future slots for 1, 5 and 10 steps forward and compare
them with the real slot representations at the same predicted
time step. The HITS@1 calculates the proportion of cases
where the predicted slots were nearer to the real slots than to
any of the other predictions:

|U |
|D|

, (13)

where D is the evaluation dataset, U ⊆ D – set of nearest
true samples to the predicted ones.

The Mean Reciprocal Rank (MRR) metric computed as:

1

|D|

|D|∑
n=1

1

rankn
, (14)



Figure 3: Each row represents a different task, with the first row illustrating the Push task of the Causal World environment and the second
showcasing the Stack task. The first column in each row represents the current observation, while the second column shows its reconstruction
by our model. Subsequent columns display the attention maps between slots and visual features, highlighting the specific object-slot interac-
tions being processed by our model.

1 STEP 5 STEP 10 STEP

MODELS MRR HITS@1 MRR HITS@1 MRR HITS@1

C-SWM 0.33 ± 0.05 0.18 ± 0.05 0.27 ± 0.06 0.15 ± 0.04 0.14 ± 0.05 0.06 ± 0.02
C-SWM HARD ATTENTION 0.11 ± 0.03 0.04 ± 0.01 0.07 ± 0.03 0.03 ± 0.02 0.04 ± 0.01 0.01 ± 0.00
C-SWM SOFT ATTENTION 0.35 ± 0.08 0.20 ± 0.06 0.26 ± 0.06 0.15 ± 0.03 0.11 ± 0.02 0.06 ± 0.01
COMPAS (OUR) 0.85 ± 0.10 0.77 ± 0.13 0.29 ± 0.09 0.16 ± 0.10 0.24 ± 0.04 0.11 ± 0.02

Table 1: Comparative results on Causal World (Push) environment. Mean ± std for 3 seeds.

1 STEP 5 STEP 10 STEP

MODELS MRR HITS@1 MRR HITS@1 MRR HITS@1

C-SWM 0.08 ± 0.02 0.03 ± 0.01 0.08 ± 0.02 0.02 ± 0.01 0.07 ± 0.01 0.03 ± 0.01
C-SWM HARD ATTENTION 0.02 ± 0.01 0.01 ± 0.00 0.03 ± 0.00 0.01 ± 0.00 0.04 ± 0.00 0.01 ± 0.00
C-SWM SOFT ATTENTION 0.12 ± 0.02 0.04 ± 0.01 0.12 ± 0.04 0.04 ± 0.02 0.08 ± 0.03 0.03 ± 0.01
COMPAS (OUR) 0.99 ± 0.01 0.98 ± 0.02 0.49 ± 0.11 0.37 ± 0.14 0.34 ± 0.07 0.17 ± 0.05

Table 2: Comparative results on Causal World (Stack) environment. Mean ± std for 3 seeds.

1 STEP 5 STEP 10 STEP

MODELS MRR HITS@1 MRR HITS@1 MRR HITS@1

C-SWM 0.17 ± 0.01 0.18 ± 0.02 0.01 ± 0.01 0.01 ± 0.02 0.03 ± 0.03 0.03 ± 0.03
C-SWM HARD ATTENTION 0.18 ± 0.02 0.16 ± 0.01 0.04 ± 0.06 0.03 ± 0.04 0.02 ± 0.02 0.01 ± 0.01
C-SWM SOFT ATTENTION 0.17 ± 0.00 0.16 ± 0.02 0.04 ± 0.04 0.03 ± 0.03 0.05 ± 0.05 0.05 ± 0.05
COMPAS (OUR) 0.42 ± 0.14 0.32 ± 0.08 0.23 ± 0.03 0.14 ± 0.01 0.19 ± 0.05 0.03 ± 0.07

Table 3: Comparative results on Atari Pong environment with random policy. Mean ± std for 3 seeds.

rankn refers to the position of the actual instances within a list
of distances that includes both real and predicted examples,
sorted by the distance between the predicted and real latent
states, from lowest to highest values.

Since slot attention has a tendency to permute slots at dif-
ferent time steps, we have used the Hungarian algorithm to
match predicted and real slots for the distance matrix compu-
tation.

The higher the values of HITS@1 and MRR, the better the
model is at predicting future states.

4.3 Training and evaluation setup
We’ve collected datasets of 1200 episodes with 100 time steps
in each trajectory for train and 1000 episodes with the same
trajectory length for evaluation.

Each C-SWM model was trained for 100 epochs with the
physics simulation configuration [Kipf et al., 2020] for Ca-
sual Worlds and the corresponding Atari Pong architecture
from [Biza et al., 2022]

4.4 Results
In the context of the Causal World environment, we con-
ducted a thorough evaluation of COMPAS, C-SWM, and C-



SWM attention-based modifications on two specific Causal
World tasks: Push and Stack. Figure 3 shows examples of
how the model’s slots attend to different elements depending
on the specific task. In the Push task, the slots focus on dif-
ferent robot arms and the cube, reflecting the key components
involved in this task. Conversely, in the Stack task, the slots
primarily aim to distinguish between two stacks of blocks.
This illustrates the model’s adaptability in dynamically ad-
justing its attention according to the unique demands of each
task, and highlights its potential for addressing a wide range
of object-centric world modeling challenges.

As highlighted in Table 1, COMPAS demonstrated supe-
rior predictive accuracy relative to C-SWM in the Push task.
This finding is a testament to the robustness of our approach
in handling complex, physically simulated environments.

Furthermore, COMPAS’ performance increased signifi-
cantly in the more challenging Stack task (Table 2). In con-
trast, C-SWM showed a significant performance degrada-
tion under these conditions. This stark contrast further high-
lights the comparative advantages of COMPAS in terms of
resilience and adaptability in diverse and complex tasks.

In the context of simpler environments such as Atari Pong,
models based on C-SWM have been observed to achieve
near-optimal results when employing specific, advanced poli-
cies and pre-trained agents during data collection [Biza et al.,
2021]. However, the performance of these models deterio-
rates significantly when a random policy is used, suggesting
a degree of instability in their performance.

In contrast, the proposed COMPAS model demonstrates
robust performance regardless of the policy used for data col-
lection. As evidenced in Table 3, COMPAS consistently out-
performs C-SWM-based models even when a random policy
is used for data collection.

5 Conclusion and future works
In this paper, we present a novel method for integrating ac-
tions and slots into object-centric world models based on the
SLATE model. Our approach uses a discrete variational au-
toencoder, slot attention, and an autoregressive transformer
to produce robust representations of complex scenes. De-
spite being specifically trained for single-step prediction, our
model demonstrates superior consistency over multiple pre-
diction steps compared to analogous models in the field. This
confirms the model’s robustness, adaptability, and ability to
handle different prediction horizons.

Our experimental results, using trajectories from Atari
Pong and Causal World environments, demonstrated the su-
perior performance and robustness of our approach. In partic-
ular, our model outperformed competing methods in the com-
plex, continuous action environment of Causal World. This
demonstrates the strength of our method in handling complex
dynamics and predicting the effects of actions in a physically
simulated world.

However, our model was less successful in the simpler, dis-
crete action environment of Atari Pong when dealing with
short trajectories. This highlights a potential area for im-
provement in handling environments with simpler dynamics
or when operating over shorter time horizons.

Looking to the future, a promising direction is to ex-
plore the neuro-symbolic perspectives of object-centric ap-
proaches. Neuro-symbolic reasoning combines the strengths
of neural networks and symbolic reasoning, allowing models
to learn from data while incorporating structured, symbolic
knowledge. This could potentially improve the interpretabil-
ity and robustness of object-centric world models, and allow
them to better generalize from learned knowledge. Further
improvements could also be made in the integration of actions
into the model, potentially through the use of more sophisti-
cated action representations or more advanced mechanisms
for binding actions and slots.

In conclusion, our work represents an important step for-
ward in object-centric world models. By integrating action
information directly into the model and using an autoregres-
sive transformer for prediction, we have demonstrated a novel
way to encode and predict the dynamics of complex environ-
ments. We expect that our work will inspire further research
and advances in this exciting area of machine learning.
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A Architecture Details
Tables 5, 6, 7 describe architecture details and hyperparameters for our experiments.

Layer Channels Activation Params

Conv2D 4× 4 64 ReLU stride: 4
Conv2D 1× 1 64 ReLU stride: 1
Conv2D 1× 1 64 ReLU stride: 1
Conv2D 1× 1 64 ReLU stride: 1
Conv2D 1× 1 64 ReLU stride: 1
Conv2D 1× 1 vocab size ReLU stride: 1
Position Embedding - - absolute

Table 5: Architecture of the CNN encoder.

Layer Channels/Size Activation Params

Conv2D 3× 3 64 ReLU stride: 1
Conv2D 1× 1 64 ReLU stride: 1
Conv2D 1× 1 64 ReLU stride: 1
Conv2D 1× 1 64 * 2 * 2 ReLU stride: 1
PixelShuffle upscale factor = 2 - -
Conv2D 3× 3 64 ReLU stride: 1
Conv2D 1× 1 64 ReLU stride: 1
Conv2D 1× 1 64 ReLU stride: 1
Conv2D 1× 1 64 * 2 * 2 ReLU stride: 1
PixelShuffle upscale factor = 2 - -
Conv2D 1× 1 3 - stride: 1

Table 6: Architecture of the CNN decoder.

Module Parameter Value
Image Size (Causal world/Pong) 96/64
Encoded Tokens 576/256
Number of episodes collected 1200
Number of steps per episode 100
Number of training epochs 150
Batch size 128

dVAE Vocab size 512
dVAE Temp. Cooldown 1.0 to 0.1
dVAE Temp. Cooldown Steps 30000
dVAE LR (no warmup) 0.0003
Transformer Layers 6
Transformer Heads 4
Transformer Hidden Dim. 128
Slot Attention Iterations 5
Slot Attention Slot dim. 64

Table 7: Hyperparameters used for our experiments.
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