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Abstract

Video anomaly detection in pedestrian streets re-
quires to explain the anomaly because of its danger,
such as a car moving on a pedestrian road, and to
interact with supervisors with question answering.
To explain the anomaly, the methods based on neu-
ral networks such as SHAP have been investigated,
but they have a limitation that only takes account of
the properties of the abnormal objects and is not in-
teractive with the supervisor. This paper proposes a
video anomaly detection method supporting ques-
tion answering with a reinforcement learning-based
neuro-symbolic approach. After converting a ques-
tion into executable programs, it is operated on a
scene graph with the video anomaly detection result
to provide an answer for the question. After that, it
executes reinforcement learning through a compari-
son between the result of the model and the ground-
truth feedback from the supervisor. A question-an-
swering experiment on UCSD dataset confirms that
the proposed method answers the questions about
anomalies, confirming 99% accuracy and demon-
strating the causal inference through case analysis.

1 Introduction

Due to the extensive usage of surveillance cameras and the
limitations of manpower, there is a growing demand for an
automated video surveillance system [Fleck and Strafer,
2010]. One of the primary challenges that autonomous video
surveillance systems face with is the automatic detection of
anomalies, defined as unusual, uncommon, or irregular
events occurring in complex and crowded environments
[Cong et al., 2011; Xu et al., 2017].

In addition to performing detection using black box models,
the anomaly detection model should provide explanations re-
garding the causes, outcomes, and necessary precautions for
identifying visual scenarios that encompass real complex sit-
uations in a logical manner [Amarasinghe et al., 2018]. Pre-
vious research on explanation has been predominantly fo-
cused on the properties of abnormal objects, thereby neglect-
ing the comprehensive associations between objects that are
linked to the risk of such abnormalities [Szymanowicz ef al.,
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Figure 1. Solving visual question answering tasks in a pedestrian
video environment with a combination of reasoning on scene
graph traversing and cognition using reinforcement learning.

2022; Szymanowicz et al., 2023; Wu et al., 2021]. This lim-
ited scope inhibits the ability to interact with diverse expla-
nations and formulate strategies for risk mitigation. Conse-
quently, the implementation of anomaly detection through
question-answering grounded in visual data presents a critical
challenge in assessing the explainable video anomaly detec-
tion systems.

In the context of question-answering, integrating neural
networks for recognition and reasoning between recognized
symbols has been effectively employed across various tasks,
such as phishing URL detection [Park et al., 2021]. The ef-
fectiveness of this strategy is evidenced by the enhanced ac-
curacy in synthetic photographic scenarios, characterized by
their simplified data collection and object relationships [Yi e?
al., 2018]. However, while the inference-based question-an-
swering model has demonstrated validity within a restricted
domain, its inference in complex real-world datasets is re-
garded as a significant problem in cognitive neural networks
and question-answering [Amizadeh et al., 2020]. For instance,
a broader definition of the perception and question scope is
required in pedestrian video environments, where the diver-
sity of object types, relationships, and potential situations is
increased. Furthermore, effective integration with previously
established recognition methods should be considered.




In this paper, the range of possible questions and answers
within pedestrian video surveillance environments is repre-
sented by predefined programs, each composed of question
queries expressed in a domain-specific language. A program
must balance usefulness and mapping performance. Before
establishing the program, the properties, and relationships be-
tween the objects in the pedestrian image, forming the foun-
dation of the program, are outlined for all images. This paper
defines object properties and relations as shown in Table 1.
Questions are translated into a sequence of the program com-
mands {p, ..., ps} for simpler execution. The programs are

classified into six categories, as illustrated in Table 2, and the
format for each input and output is explicitly defined.
Moreover, we present a neuro-symbolic approach integrat-
ing reinforcement learning for scene graph construction and
constant curvature manifold (CCM)-based anomaly detection
to resolve the problem (see Figure 1). During image anomaly
detection, the image is transposed to a latent space founded
on a non-Euclidean framework, enabling the detection of
anomalies within video content. Images are transformed into
a graph structure, and an explicit inference process for the

Name Description
Object property
Shape Person, bicycle, car, skateboard, wheelchair, cart, truck, others
Size Small, large
Position x-y location
Velocity Computed by comparing x-y coordinates within frames

Object relation

Relative position
Relative size
Relative velocity

Left, right, in front, behind, over, under
Larger than, smaller than
Faster than, slower than

Numbers More than, less than
Equal Same shape, same size, same position, same abnormal
Table 1: Definition of object property and relation on a pedestrian video environment.
Name Description
Function Input Output Function Input Output
Basic program
scene - Object list count Object list Integer
unique Object list Object exist Object list Boolean
relate Object list ~ Object list get frame Integer scene
Filter program
filter size List, size List filter object  List, abnormal List
filter_shape List, shape List filter scene List, Int List
filter position Position List filter frame List, Int List
filter velocity List, integer List
Query program
query_size Object Size query_velocity Object Integer
query_shape Object Shape query_type Object List
query_position Object Position
Logic program
AND List, List ~ Object list OR List, List Object list
Sameness program
same_size Object Object list [ same position Object Object list
same_shape Object Object list [ same_velocity Object Object list
Compare function
equal integer Int, Int Boolean equal_shape Shape, Shape  Boolean
equal_size Size, Size Boolean less_then Int, Int Boolean
equal color Col, Col Boolean greater _then Int, Int Boolean

Table 2: Definition of domain-specific language set for visual question and answering.



Approach Visual perception QA processing Environment
Long short-term memory Synthetic visual scenes
End-to-end neural net- Convolutional neu- [Antol et al., 2015] (CLEVR)
work ral network Modular network with encoder- General objects
decoder [Hu ef al., 2017] (MS-COCO)

Mask R-CNN
(Object tables)

Domain-specific language

[Yietal, 2018] Synthetic visual scenes

Mask R-CNN

Neuro-symbolic (Feature vectors)

Quasi-symbolic program
execution [Mao et al., 2019]

(CLEVR)

Faster R-CNN

Differentiable first-order logic
[Amizadeh et al., 2020]

General objects with
scene graph (GQA)

Table 3: Previous research for combining deep learning and inference algorithms for visual question and answering.

detected anomaly generates an output using an algorithm de-
signed to traverse the transformed graph. A neuro-symbolic
system then takes on the task of scene-graph reasoning, inte-
grating the anomaly detection results from pedestrian video
data with programs translated from question sets. Scene
graph reasoning, predicated on object properties and relation-
ships, generates complex inferences suitable for question-an-
swering in realistic settings. Furthermore, our proposed
model is designed to learn with reinforcement feedback, us-
ing both predicted and original answers. This allows model
for tuning toward more accurate answer prediction. We have
verified the model's ability to handle complex queries.

We illustrate the superior performance of our method com-
pared to extant visual question-answering techniques through
graph reasoning. Our proposed method is evaluated on five
distinct types of questions, finding that it outperforms the
convnetional methods in terms of efficacy. Drawing from our
experimental results, we posit that the integration of a neuro-
symbolic system for scene-graph reasoning with a deep learn-
ing-based question-answering mechanism furnishes a level of
inference that is highly suited to real-world environments.

2 Related Works

Video Anomaly Detection (VAD). Numerous studies
have explored anomaly detection, typically supervised or un-
supervised methods. Despite the challenges in data collection,
supervised anomaly detection models have been studied due
to their superior performance. Shin and Cho, for instance, de-
veloped a data augmentation method using a generative ad-
versarial network (GAN) [Shin and Cho, 2018]. Conversely,
unsupervised anomaly detectors overcome some limitations
inherent in supervised models. Zhao et al. proposed a model
that identifies unusual events in videos via dynamic sparse
coding [Zhao et al., 2011], while Liu et al. devised a future
frame prediction model for anomaly detection [Liu et al.,
2018]. In the latter model, predicted frames are compared
with actual future frames, with large differences indicating an
anomaly. Further advancements in the field include end-to-
end architecture for one-class classification [Sabokrou et al.,
2018], and a modified GAN method that learns an encoder
simultaneously during training to develop an anomaly detec-
tion method [Zenati et al., 2018]. They constructed an adver-
sarially learned one-class classifier (ALOCC) composed of
an encoder, decoder, and discriminator. However, defining

data representation as a simple distribution can result in un-
seen data easily following that distribution, potentially caus-
ing novel data to be incorrectly classified as normal. To ad-
dress this issue, we propose a one-class anomaly detection
model based on a constant curvature manifold, a type of non-
Euclidean space.

Scene Graph Generation. Numerous generative methods
such as conditional random field (CRF), CNN, RNN, LSTM,
and graph neural networks have been developed for scene
graphs. CRF-based models like SG-CRF effectively model
statistical correlation in visual relationships [Cong et al.,
2018]. With the advent of neural models for scene graph gen-
eration, CNN- and RNN-based models have been explored.
BAR-CNN, a CNN-based model, incorporates an attention
mechanism but may still suffer from limited receptive neuron
regions [Kolesnikov ef al., 2019]. The RNN-based Zoom-Net
model successfully recognizes complex visual relationships
through deep message propagation and interaction between
local object features and global predicate features without a
linguistic dictionary [Yin et al., 2018]. Despite the success of
these models, GCN has proven to be highly effective in graph
reasoning tasks, leading to numerous researchers exploring
scene graph generation methods based on the graph [Goller
and Kuchler, 1996; Gori et al., 2005]. Graph R-CNN, for ex-
ample, trims the original scene graph to generate sparse can-
didate graph structures [Yang et al., 2018]. In this paper, we
adopt Graph-RCNN, considering its efficiency and effective-
ness in generating scene graphs within complex scenarios.

Question-Answering. Table 3 outlines the methods com-
bining deep learning and inference algorithms for visual
question-answering, categorized by approach, method, and
environment. Initial attempts to implement image recognition
and processing, as well as mapping with neural networks, de-
fined visual question-answering tasks within a synthetic en-
vironment [Antol et al., 2015]. Several methods using modu-
lar neural networks demonstrated the necessity of distin-
guishing between recognition and natural language pro-
cessing tasks [Hu et al., 2017]. In the neuro-symbolic ap-
proach, which combines inference algorithms with deep
learning, symbol grounding and inference methods of objects
were examined [Y1i et al., 2018]. The research aiming to de-
velop domain-specific languages and symbolic processes for
query and relationship representation [Amizadeh et al., 2020]



demonstrated high-performance question-answering com-
pared to human respondents in synthetic environments [Mao
et al., 2019]. Based on previous studies, this paper redefines
objects and query range to extend the neuro-symbolic ap-
proach to more complex pedestrian video surveillance envi-
ronments and enhances the practicality by incorporating an
anomaly detection module with neural networks.

3 Methodology

Figure 2 illustrates the proposed method in this paper. An au-
toencoder employing a constant curvature manifold detects
anomalies, and a scene graph is formulated by integrating
anomaly detection outcomes with object detection results
from pedestrian video data. The input questions and associ-
ated programs are mapped onto a supervised long short-term
memory (LSTM) encoder-decoder framework. The set of
programs, extracted from the input questions, executes a fil-
tration process with scene graph traversal. This methodology
produces the outcomes by applying a specific program to a
group of nodes within a scene graph. After that, the model is
trained to generate suitable responses via reinforcement
learning.

3.1 Anomaly Detection with Autoencoder

Variational autoencoders (VAEs) or generative adversarial
networks (GANs) may not be well-suited for learning com-
plex data representations. We aim to address this issue using
a constant curvature manifold in the latent space. As a result,
even when a novel anomaly appears, it is readily simulated
by the normal variance. This phenomenon can be easily ob-
served in videos with minor changes, where the background
remains fixed while only the object changes. The representa-
tion that our model learns is based on a constant curvature
manifold, which belongs to a class of non-Euclidean spaces.

The d-dimensional CCM T is a Riemannian manifold
characterized by a constant curvature k € R. It can be defined
as follows:

T ={x€eR™| <x,x>=kKk1} (1)

where <-,-> denotes a scalar product. In the CCM, it is de-
fined from the pseudo-Euclidean scalar product:

<x,y>=xT (Id(;d _01) y )

where 1,4 is the identity matrix with size of d and T means
transpose operator.

The three components are trained to define the data repre-
sentation as the constant curvature manifold. An encoder g is
trained to project the input data into latent space while the
features of data are maintained. A discriminator D learns to
distinguish features g(x") of normal data from other ex-
tracted features. The encoder is forced to project x and x' to
the same point which follows a CCM.Compared to the previ-
ous works [Cruz-Esquivel and Guzman-Zavaleta, 2022;
Wang et al., 2022; Chang et al., 2020], our discriminator has
compressed features as input, resulting in the small size of the
model. In this process, the encoder is forced to project x and
x" to the same point which follows a CCM as shown in Figure
3, and the discriminator is trained to classify g(x), g(x"), and
z. Therefore, to explicitly verify whether the trained latent
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Figure 2. An illustration of the proposed method. Anomalies
have been detected with autoencoder with CCM, which is added
to the scene graph generated from graph-RCNN. Questions are
translated into executable programs with LSTM, and neuro-
symbolic integration is applied with scene graph traversal.
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Figure 3. Structure of the anomaly detector with CCM.

space forms CCM, we add a membership function u(-) as
follows:



Algorithm 1: Anomaly Detection Training Process

Data: hyperparameters
Result: discriminator D, autoencoder AE, encoder g,
and decoder f
fori=1,...,Mdo
forj=1,...,Ndo
Sample x and x' form X and X + N,

Sample z from CCM

oL
Ly« Lp —0—;(x,x’,z)

aL
Lyg < Lyp — _ezE (x)

L, « L _ 9% x,x")

g g g
aL
Ly L, ——L(xx'
r < Ly o (
Ly« Lp —GL(x,x’,z)
D
end
end
return f, g and D
—(<zz>-k"1 2
() = exp((Z2) 3)

where o is the hyperparameter to control the scale of CCM.
The final forms of the objective function £, and L, for the
encoder and the discriminator are as follows:

Evx [L(x f(9())] +
[ - 0
Ev-xon, 109 (1= (D(9@)) + an()) |

lOg(l _ (D(g(x)2)+D(z)
(%)

+ap(x)))

+Ey x+n,[l0g(D(g(x) + ap(x)]
l is a binary function to measure the difference between the
input data and the reconstructed data. a is a hyperparameter
for balance between the outputs of the discriminator (implicit
verification) and the membership function (explicit verifica-
tion), and « is a hyperparameter for balance.

Ly = Exoxa~n,[Lx f(g())), Ux, f(g(x + a)))](6)
Lap = Exx[U(x, f(9(2)))] ()

The final objective function for the proposed one-class
anomaly detection model is shown in equation (8). To bal-
ance each term, we use the hyperparameters 5, ¥ , and 8. Al-
gorithm 1 shows the whole training process.

L=Ly+BLy+VLs+ 8Ly (®)
where M is the number of epochs and N is the number of
batches.

]Ex~X,z~CCM

LD:

3.2 Scene Graph Generation using Graph R-CNN

The scene graph describes the properties and relationships of
objects. Given a set of object property categories C =
{Cy, ..., C;,} and a set of object relationship categories R, a
scene graph is a tuple (0, E) where O = {0, ..., 0,} is a set
of objects with each o;, an object that 0; = {c;q, Ci3, ---, Cim }
where ¢;; € Cj, and E S 0O X RX O is a set of directed

edges of the form (o;, 7, 0;) where 0;,0; € 0 andr € R. For
this scene graph, object property and relation are defined as
the same as those of the questions (Table 1 and Table 2).

This paper details the transformation of images from pe-
destrian video sequences into scene graphs via a three-step
procedure based on the defined scene graph and object prop-
erty. Initially, a 3D convolution operation-based autoencoder,
factoring in a time axis, determines the normality of the cor-
responding image. Subsequently, objects within images are
identified where anomalies have been detected with Faster R-
CNN. Lastly, the detection outcome is produced through
Graph R-CNN in conjunction with the original image.

Faster R-CNN undertakes object detection for scene graph
parsing. The model proposed integrates anomaly detection
results from an autoencoder with constant curvature manifold
and an image to detect objects, with an accompanying repre-
sentation of their normality.

Graph R-CNN, a leading method among scene graph gen-
eration algorithms, successfully elucidates the relationships
between objects more effectively. It employs a relationship
proposition network (RePN) that efficiently manages second-
ary potential relationships between image objects and a graph
convolutional network (GCN). In this paper, the images of
pedestrian video frames are input into corresponding algo-
rithm models, trained with the VQA dataset, preserving valid
information correlating to the predefined object properties.
The resultant scene graph facilitates knowledge representa-
tion that can more distinctly express object relationships
while safeguarding information on the objects.

3.3 Neuro-Symbolic QA with Reinforcement

In the proposed model, a question is translated into a se-
quence of programs {p,, ..., ps} via an LSTM encoder-de-
coder structure. Scene graph traversing is performed using
the corresponding translated program and the resultant scene
graph from section 3.1. Each program operates on a set of
nodes in the scene graph. For instance, the "scene" program
returns all objects in the current scene. Programs other than
"relation" and "scene" do not require any relational infor-
mation. Each of these objects in the set is processed by an "if-
else" operation, and the resulting output is calculated.

Programs associated with relationships require infor-
mation about the relationships between objects. This model
employs a method of searching through the edges of the scene
graph. It verifies whether an edge, corresponding to a con-
nection for filtering, is connected to each node for a set of
nodes that are used as input when the edge is present. Then,
the program for connection proceeds by calculating a set of
nodes comprised of target nodes and outputs it. This process
is illustrated in Algorithm 2. Through this algorithm, logical
reasoning for each program stage becomes feasible.

In this paper, a two-stage procedure is implemented to train
LSTM, with the aim of elucidating the mapping between a
question and its corresponding program. Initially, a few
ground truth question-program pairs are extracted from the
training set to pretrain the model under direct supervision.
Subsequently, the model is paired with a deterministic pro-
gram executor. Reinforcement learning is then employed to



Algorithm 2: Scene Graph Traversing Algorithm

Data: scene graph G = {0, E} and program sequence
P ={p1, 2., Pn}
Result: traversing result — answer to question
for p; € P do
if p; is “scene” do
S.push(¢)
else
if p; is in “relation” then
Oorg = S-pop()
Onew = ¢
for o; € 0,,4 do
for e, € E where ej, = 0,0 do
if e, is relation in p; then
Onew = Onew + {ek}
end
end
end
S.push(0,c,)
else
S =pi(S)
end
end
end
return S.pon()

fine-tune the LSTM, utilizing a larger dataset of question-an-
swer pairs. Notably, only the accuracy of the execution result
is used as the reward signal in this reinforcement learning
phase.

Employing reinforcement learning for question and answer
pairs contributes to generating more precise responses to in-
quiries. The decision to respond to the input image and query
serves as a reward signal r, wherein the value of r — b is
propagated for model learning by establishing a baseline b to
inhibit decay. The value of b is initially set to zero and is sub-
sequently updated whenever a reward value manifests, shown
as equation (9), thereby modulating the learning of extant
models.

4 Experiments

4.1 Real-World Pedestrian Video Dataset

In order to evaluate the efficacy of the proposed method, we
employ the UCSD pedestrian datasets, which are collected
from stationary CCTV footage. This data comprises pedestri-
ans and various moving objects captured moving in both di-
rections. As in Table 1, the object attribute table generated
from this data includes combinations of two to four-wheeled
vehicles (bicycles, cars, skateboards, wheelchairs, carts, and
trucks), along with various backgrounds (wood, roads, and
grass).

In this paper, question-program pairs are formulated based
on the objects within an image. The program is comprised of
a sequence of domain-specific languages, as specified in Ta-
ble 2, and each pair originates from a predefined template.
The queries have been categorized into five types, each typi-
fied by its distinct properties.

“Querying Attribute” refers to inquiries about an object's
characteristics, including queries concerning the attributes of
anomaly objects. “Compare Attribute” involves the compar-
ison of attributes between two objects and contains queries
that can also determine anomaly attributes. “Exist” and
“count” are demarcated as queries about the existence and
quantity of specific objects, respectively. Lastly, “compare
Number” is classified as a query that contrasts the number of
objects across various sets.

4.2 Question and Answering Performance

Table 4 compares the performance of our method with the
conventional question-answering methods, segregated by
program type. In scenarios where image recognition using
convolutional neural networks is coupled with question pro-
cessing using LSTM, and mapped using simple supervised
learning, our method seldom misclassifies, exhibiting an ac-
curacy of 0.9971. This contrasts starkly with the considerably
lower accuracy of 0.6457 when the number of objects is pre-
cisely specified in the table of perceived object properties.
Furthermore, in complex environments such as pedestrian
video sequences, our method, in combination with inference
capabilities, outperforms the encoder-decoder approaches

b (1 ~ Xdecay )r + Qgecayb ©) based on modular neural networks, achieving an accuracy of
0.9991 against the latter's 0.9232.
. Compare Compare Query Overall
Method Count — Exist number  attribute attribute accuracy
CNN-LSTM [Antol et al., 2015] 64.57% 87.44%  53.78% 77.47% 7747%  72.15%
Mask R-CNN 85.23% 92.93%  83.45% 90.68% 92.68%  88.99%
Module network with Encoder-decoder g6 770, 96619, 86.48%  96.51%  9527%  92.32%
[Huet al., 2017]
Ours 99.71% 99.97%  99.96% 99.93% 99.98%  99.91%

Table 4: 10-fold cross-validation of accuracy with other methods by query type.



Answer (P&L)/

Scene Query Question Program Representation Answer (Graph)
scene
What number filter s1;e[small]
of large normal unique
relate[behind]
Count persons are h 14/15
. filter size[large]
behind the
filter anomaly[normal]
small man?
filter shape[person]
count
scene
Are there any filter size[small]
. . filter anomaly[normal]
Exist things in front filter shape[person] False / True
of the small :
normal person? unique
’ relate[front]
exist
scene
Are there more filter position[left]
humans on the filter shape[person]
Compare number  left side of the scene True / False
scene than on filter position[right]
the right? filter shape[person]
greater than
scene
What number filter s1;e[small]
of large normal unique
relate[behind]
Count persons are . 7/8
. filter size[large]
behind the
filter anomaly[normal]
small man?
filter shape[person]
count

Table 5: Program representation and scene-graph for each case of correct response.

For every classification, our method exhibits the highest
accuracy. Notably, our method achieves a remarkable accu- .., § Conclusions
racy of 0.9996 in the "compare number" classification, the
most challenging category that records the lowest figure for
all other algorithms. This demonstrates the potential of the
neuro-symbolic approach in tackling problems that could
yield varied and complex values, such as numerical compar-
ison, and affirms the role of the scene graph in bolstering this
capability. In addition, we also report higher accuracy in
"query attribute" and "count" categories, which can lead to
complex results and require precise determination, respec-
tively.

Table 5 shows the instances where questions and answers
fail when employing data inclusive of object properties and
locations, but succeed when scene graph data is employed. In
cases where relational information is required for questions,
misidentification of relationships frequently occurs based on
data with object property and location. However, when the
proposed method is adopted for image information represen-
tation, the relational information can be more accurately han-
dled even with more complex programs.

In this paper, we propose a neuro-symbolic visual question-
answering method tailored for pedestrian anomaly video se-
quences, which closely resemble real-world environments.
This method is facilitated by defining object properties, rela-
tionships, and question coverage and incorporating a scene
graph generator as well as an anomaly detector. The proposed
method demonstrates considerable accuracy of 0.9978 across
five types of queries.

However, the proposed method's inference algorithm, de-
signed to map questions and answers, is implemented as a
basic filter algorithm operation. This approach needs valida-
tion in the general image field, where object relationships are
more complex than in pedestrian video sequences. Particu-
larly, as the emergence of various objects tends to complicate
the scene graph, thereby increasing computational demand, a
learning method that considers computational optimization
will be required in the future work.
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