
 

 

Abstract 1 

Video anomaly detection in pedestrian streets re-2 

quires to explain the anomaly because of its danger, 3 

such as a car moving on a pedestrian road, and to 4 
interact with supervisors with question answering. 5 

To explain the anomaly, the methods based on neu-6 

ral networks such as SHAP have been investigated, 7 

but they have a limitation that only takes account of 8 

the properties of the abnormal objects and is not in-9 

teractive with the supervisor. This paper proposes a 10 
video anomaly detection method supporting ques-11 

tion answering with a reinforcement learning-based 12 

neuro-symbolic approach. After converting a ques-13 

tion into executable programs, it is operated on a 14 

scene graph with the video anomaly detection result 15 

to provide an answer for the question. After that, it 16 
executes reinforcement learning through a compari-17 

son between the result of the model and the ground-18 

truth feedback from the supervisor. A question-an-19 

swering experiment on UCSD dataset confirms that 20 

the proposed method answers the questions about 21 

anomalies, confirming 99% accuracy and demon-22 
strating the causal inference through case analysis. 23 

1 Introduction 24 

Due to the extensive usage of surveillance cameras and the 25 

limitations of manpower, there is a growing demand for an 26 

automated video surveillance system [Fleck and Straßer, 27 

2010]. One of the primary challenges that autonomous video 28 
surveillance systems face with is the automatic detection of 29 

anomalies, defined as unusual, uncommon, or irregular 30 

events occurring in complex and crowded environments 31 

[Cong et al., 2011; Xu et al., 2017].  32 

In addition to performing detection using black box models, 33 

the anomaly detection model should provide explanations re-34 
garding the causes, outcomes, and necessary precautions for 35 

identifying visual scenarios that encompass real complex sit-36 

uations in a logical manner [Amarasinghe et al., 2018]. Pre-37 

vious research on explanation has been predominantly fo-38 

cused on the properties of abnormal objects, thereby neglect-39 

ing the comprehensive associations between objects that are 40 
linked to the risk of such abnormalities [Szymanowicz et al., 41 

2022; Szymanowicz et al., 2023; Wu et al., 2021]. This lim-42 
ited scope inhibits the ability to interact with diverse expla-43 

nations and formulate strategies for risk mitigation. Conse-44 

quently, the implementation of anomaly detection through 45 

question-answering grounded in visual data presents a critical 46 

challenge in assessing the explainable video anomaly detec-47 

tion systems. 48 
In the context of question-answering, integrating neural 49 

networks for recognition and reasoning between recognized 50 

symbols has been effectively employed across various tasks, 51 

such as phishing URL detection [Park et al., 2021]. The ef-52 

fectiveness of this strategy is evidenced by the enhanced ac-53 

curacy in synthetic photographic scenarios, characterized by 54 
their simplified data collection and object relationships [Yi et 55 

al., 2018]. However, while the inference-based question-an-56 

swering model has demonstrated validity within a restricted 57 

domain, its inference in complex real-world datasets is re-58 

garded as a significant problem in cognitive neural networks 59 

and question-answering [Amizadeh et al., 2020]. For instance, 60 
a broader definition of the perception and question scope is 61 

required in pedestrian video environments, where the diver-62 

sity of object types, relationships, and potential situations is 63 

increased. Furthermore, effective integration with previously 64 

established recognition methods should be considered. 65 
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Figure 1. Solving visual question answering tasks in a pedestrian 

video environment with a combination of reasoning on scene 
graph traversing and cognition using reinforcement learning. 



 

 

In this paper, the range of possible questions and answers 66 

within pedestrian video surveillance environments is repre-67 

sented by predefined programs, each composed of question 68 

queries expressed in a domain-specific language. A program 69 

must balance usefulness and mapping performance. Before 70 
establishing the program, the properties, and relationships be-71 

tween the objects in the pedestrian image, forming the foun-72 

dation of the program, are outlined for all images. This paper 73 

defines object properties and relations as shown in Table 1. 74 

Questions are translated into a sequence of the program com-75 

mands {𝑝!, … , 𝑝"} for simpler execution. The programs are 76 

classified into six categories, as illustrated in Table 2, and the 77 

format for each input and output is explicitly defined. 78 

Moreover, we present a neuro-symbolic approach integrat-79 

ing reinforcement learning for scene graph construction and 80 

constant curvature manifold (CCM)-based anomaly detection 81 
to resolve the problem (see Figure 1). During image anomaly 82 

detection, the image is transposed to a latent space founded 83 

on a non-Euclidean framework, enabling the detection of 84 

anomalies within video content. Images are transformed into 85 

a graph structure, and an explicit inference process for the 86 

Name Description     
Function Input Output Function Input Output 

Basic program 
scene - Object list count Object list Integer 

unique  Object list Object exist Object list Boolean 
relate Object list Object list get_frame Integer scene 

Filter program 
filter_size  List, size List filter_object List, abnormal List 

filter_shape List, shape List filter_scene List, Int List 
filter_position Position List filter_frame List, Int List 
filter_velocity List, integer List    

Query program 
query_size Object Size query_velocity Object Integer 

query_shape Object Shape query_type Object List 
query_position Object Position    

Logic program 
AND List, List Object list OR List, List Object list 

Sameness program 
same_size  Object Object list same_position Object Object list 

same_shape Object Object list same_velocity Object Object list 
Compare function 

equal_integer Int, Int Boolean equal_shape Shape, Shape Boolean 
equal_size Size, Size Boolean less_then Int, Int Boolean 
equal_color Col, Col Boolean greater_then Int, Int Boolean 

Table 2: Definition of domain-specific language set for visual question and answering. 

Name Description 
Object property 

Shape Person, bicycle, car, skateboard, wheelchair, cart, truck, others 
Size Small, large 

Position x-y location 
Velocity Computed by comparing x-y coordinates within frames 

Object relation 
Relative position Left, right, in front, behind, over, under 

Relative size Larger than, smaller than 
Relative velocity Faster than, slower than 

Numbers More than, less than 
Equal Same shape, same size, same position, same abnormal 

Table 1: Definition of object property and relation on a pedestrian video environment. 



 

 

detected anomaly generates an output using an algorithm de-87 

signed to traverse the transformed graph. A neuro-symbolic 88 
system then takes on the task of scene-graph reasoning, inte-89 

grating the anomaly detection results from pedestrian video 90 

data with programs translated from question sets. Scene 91 

graph reasoning, predicated on object properties and relation-92 

ships, generates complex inferences suitable for question-an-93 

swering in realistic settings. Furthermore, our proposed 94 
model is designed to learn with reinforcement feedback, us-95 

ing both predicted and original answers. This allows model 96 

for tuning toward more accurate answer prediction. We have 97 

verified the model's ability to handle complex queries. 98 

We illustrate the superior performance of our method com-99 

pared to extant visual question-answering techniques through 100 
graph reasoning. Our proposed method is evaluated on five 101 

distinct types of questions, finding that it outperforms the 102 

convnetional methods in terms of efficacy. Drawing from our 103 

experimental results, we posit that the integration of a neuro-104 

symbolic system for scene-graph reasoning with a deep learn-105 

ing-based question-answering mechanism furnishes a level of 106 
inference that is highly suited to real-world environments. 107 

2 Related Works 108 

Video Anomaly Detection (VAD). Numerous studies 109 

have explored anomaly detection, typically supervised or un-110 

supervised methods. Despite the challenges in data collection, 111 

supervised anomaly detection models have been studied due 112 
to their superior performance. Shin and Cho, for instance, de-113 

veloped a data augmentation method using a generative ad-114 

versarial network (GAN) [Shin and Cho, 2018]. Conversely, 115 

unsupervised anomaly detectors overcome some limitations 116 

inherent in supervised models. Zhao et al. proposed a model 117 

that identifies unusual events in videos via dynamic sparse 118 
coding [Zhao et al., 2011], while Liu et al. devised a future 119 

frame prediction model for anomaly detection [Liu et al., 120 

2018]. In the latter model, predicted frames are compared 121 

with actual future frames, with large differences indicating an 122 

anomaly. Further advancements in the field include end-to-123 

end architecture for one-class classification [Sabokrou et al., 124 
2018], and a modified GAN method that learns an encoder 125 

simultaneously during training to develop an anomaly detec-126 

tion method [Zenati et al., 2018]. They constructed an adver-127 

sarially learned one-class classifier (ALOCC) composed of 128 

an encoder, decoder, and discriminator. However, defining 129 

data representation as a simple distribution can result in un-130 

seen data easily following that distribution, potentially caus-131 
ing novel data to be incorrectly classified as normal. To ad-132 

dress this issue, we propose a one-class anomaly detection 133 

model based on a constant curvature manifold, a type of non-134 

Euclidean space. 135 

Scene Graph Generation. Numerous generative methods 136 

such as conditional random field (CRF), CNN, RNN, LSTM, 137 
and graph neural networks have been developed for scene 138 

graphs. CRF-based models like SG-CRF effectively model 139 

statistical correlation in visual relationships [Cong et al., 140 

2018]. With the advent of neural models for scene graph gen-141 

eration, CNN- and RNN-based models have been explored. 142 

BAR-CNN, a CNN-based model, incorporates an attention 143 
mechanism but may still suffer from limited receptive neuron 144 

regions [Kolesnikov et al., 2019]. The RNN-based Zoom-Net 145 

model successfully recognizes complex visual relationships 146 

through deep message propagation and interaction between 147 

local object features and global predicate features without a 148 

linguistic dictionary [Yin et al., 2018]. Despite the success of 149 
these models, GCN has proven to be highly effective in graph 150 

reasoning tasks, leading to numerous researchers exploring 151 

scene graph generation methods based on the graph [Goller 152 

and Kuchler, 1996; Gori et al., 2005]. Graph R-CNN, for ex-153 

ample, trims the original scene graph to generate sparse can-154 

didate graph structures [Yang et al., 2018]. In this paper, we 155 
adopt Graph-RCNN, considering its efficiency and effective-156 

ness in generating scene graphs within complex scenarios. 157 

Question-Answering. Table 3 outlines the methods com-158 

bining deep learning and inference algorithms for visual 159 

question-answering, categorized by approach, method, and 160 

environment. Initial attempts to implement image recognition 161 
and processing, as well as mapping with neural networks, de-162 

fined visual question-answering tasks within a synthetic en-163 

vironment [Antol et al., 2015]. Several methods using modu-164 

lar neural networks demonstrated the necessity of distin-165 

guishing between recognition and natural language pro-166 

cessing tasks [Hu et al., 2017]. In the neuro-symbolic ap-167 
proach, which combines inference algorithms with deep 168 

learning, symbol grounding and inference methods of objects 169 

were examined [Yi et al., 2018]. The research aiming to de-170 

velop domain-specific languages and symbolic processes for 171 

query and relationship representation [Amizadeh et al., 2020] 172 

Approach Visual perception QA processing Environment 

End-to-end neural net-
work 

Convolutional neu-
ral network 

Long short-term memory 
[Antol et al., 2015] 

Synthetic visual scenes 
(CLEVR) 

Modular network with encoder-
decoder [Hu et al., 2017] 

General objects 
(MS-COCO) 

Neuro-symbolic 

Mask R-CNN 
(Object tables) 

Domain-specific language  
[Yi et al., 2018] Synthetic visual scenes 

(CLEVR) Mask R-CNN 
(Feature vectors) 

Quasi-symbolic program  
execution [Mao et al., 2019] 

Faster R-CNN Differentiable first-order logic 
[Amizadeh et al., 2020] 

General objects with 
scene graph (GQA) 

Table 3: Previous research for combining deep learning and inference algorithms for visual question and answering. 



 

 

demonstrated high-performance question-answering com-173 

pared to human respondents in synthetic environments [Mao 174 

et al., 2019]. Based on previous studies, this paper redefines 175 

objects and query range to extend the neuro-symbolic ap-176 

proach to more complex pedestrian video surveillance envi-177 
ronments and enhances the practicality by incorporating an 178 

anomaly detection module with neural networks. 179 

3 Methodology  180 

Figure 2 illustrates the proposed method in this paper. An au-181 

toencoder employing a constant curvature manifold detects 182 

anomalies, and a scene graph is formulated by integrating 183 
anomaly detection outcomes with object detection results 184 

from pedestrian video data. The input questions and associ-185 

ated programs are mapped onto a supervised long short-term 186 

memory (LSTM) encoder-decoder framework. The set of 187 

programs, extracted from the input questions, executes a fil-188 

tration process with scene graph traversal. This methodology 189 
produces the outcomes by applying a specific program to a 190 

group of nodes within a scene graph. After that, the model is 191 

trained to generate suitable responses via reinforcement 192 

learning. 193 

3.1 Anomaly Detection with Autoencoder 194 

Variational autoencoders (VAEs) or generative adversarial 195 

networks (GANs) may not be well-suited for learning com-196 
plex data representations. We aim to address this issue using 197 

a constant curvature manifold in the latent space. As a result, 198 

even when a novel anomaly appears, it is readily simulated 199 

by the normal variance. This phenomenon can be easily ob-200 

served in videos with minor changes, where the background 201 

remains fixed while only the object changes. The representa-202 
tion that our model learns is based on a constant curvature 203 

manifold, which belongs to a class of non-Euclidean spaces. 204 

The 𝑑 -dimensional CCM 𝒯  is a Riemannian manifold 205 

characterized by a constant curvature 𝜅 ∈ ℝ. It can be defined 206 

as follows: 207 

  𝓣 = {𝒙 ∈ ℝ𝒅$𝟏| < 𝒙, 𝒙 >= 𝜿&𝟏} (1) 208 
where <∙,∙> denotes a scalar product. In the CCM, it is de-209 

fined from the pseudo-Euclidean scalar product: 210 

  < 𝒙, 𝒚 >	= 	𝒙𝑻 5𝑰𝒅×𝒅 𝟎
𝟎 −𝟏:𝒚 (2) 211 

where 𝐼)×) is the identity matrix with size of 𝑑 and 𝑇 means 212 

transpose operator. 213 

The three components are trained to define the data repre-214 
sentation as the constant curvature manifold. An encoder 𝑔 is 215 

trained to project the input data into latent space while the 216 

features of data are maintained. A discriminator 𝐷 learns to 217 

distinguish features 𝑔(𝑥′)  of normal data from other ex-218 

tracted features. The encoder is forced to project 𝑥 and 𝑥′ to 219 

the same point which follows a CCM.Compared to the previ-220 
ous works [Cruz-Esquivel and Guzman-Zavaleta, 2022; 221 

Wang et al., 2022; Chang et al., 2020], our discriminator has 222 

compressed features as input, resulting in the small size of the 223 

model. In this process, the encoder is forced to project 𝑥 and 224 

𝑥′ to the same point which follows a CCM as shown in Figure 225 

3, and the discriminator is trained to classify 𝑔(𝑥), 𝑔(𝑥′), and 226 
𝑧. Therefore, to explicitly verify whether the trained latent 227 

space forms CCM, we add a membership function 𝜇(⋅) as 228 

follows:  229 

 
Figure 2. An illustration of the proposed method. Anomalies 

have been detected with autoencoder with CCM, which is added 
to the scene graph generated from graph-RCNN. Questions are 

translated into executable programs with LSTM, and neuro-
symbolic integration is applied with scene graph traversal. 

 
Figure 3. Structure of the anomaly detector with CCM. 



 

 

  𝝁(𝒛) 	= 	𝒆𝒙𝒑(&*+𝒛,𝒛.&𝜿
!𝟏0

𝟐

𝟐𝝈𝟐
) (3) 230 

where 𝜎 is the hyperparameter to control the scale of CCM. 231 

The final forms of the objective function ℒ3 and ℒ4 for the 232 

encoder and the discriminator are as follows:  233 

 𝓛𝒈 =
𝔼𝒙~𝑿	 N𝒍 5𝒙, 𝒇Q𝒈(𝒙)S:T +

𝔼𝒙$~𝑿$𝑵𝝈 N𝒍𝒐𝒈W𝟏 − 5𝑫Q𝒈(𝒙
;)S + 𝜶𝝁(𝒙;):ZT

(4) 234 

  𝓛𝑫 =
𝔼𝒙~𝑿,𝒛~𝑪𝑪𝑴 [

𝐥𝐨𝐠(𝟏 − (𝑫*𝒈(𝒙)0$𝑫(𝒛)
𝟐

+𝜶𝝁(𝒙)))	
_

+𝔼𝒙$~𝑿$𝑵𝝈[𝐥𝐨𝐠(𝑫(𝒈(𝒙
;)) + 𝜶𝝁(𝒙;)]

 (5) 235 

𝑙 is a binary function to measure the difference between the 236 

input data and the reconstructed data. 𝛼 is a hyperparameter 237 

for balance between the outputs of the discriminator (implicit 238 

verification) and the membership function (explicit verifica-239 

tion), and 𝛼 is a hyperparameter for balance. 240 

 𝓛𝒇 	= 𝔼𝒙∼𝑿,𝜶∼	𝑵𝝈[𝒍(𝒙, 𝒇(𝒈(𝒙))), 𝒍(𝒙, 𝒇(𝒈(𝒙 + 𝜶)))](6) 241 

  𝓛𝑨𝑬 = 𝔼𝒙∼𝑿[𝒍(𝒙, 𝒇(𝒈(𝒙)))] (7) 242 

The final objective function for the proposed one-class 243 

anomaly detection model is shown in equation (8). To bal-244 

ance each term, we use the hyperparameters 𝛽, 𝛾 , and 𝛿. Al-245 

gorithm 1 shows the whole training process.  246 

  𝓛 = 𝓛𝑫 + 𝜷𝓛𝒈 + 𝜸𝓛𝒇 + 𝜹𝓛𝑨𝑬 (8) 247 
where 𝑀 is the number of epochs and 𝑁 is the number of 248 

batches.  249 

3.2 Scene Graph Generation using Graph R-CNN 250 

The scene graph describes the properties and relationships of 251 

objects. Given a set of object property categories 𝐶 =252 

{𝐶!, … , 𝐶F} and a set of object relationship categories 𝑅, a 253 

scene graph is a tuple (𝑂, 𝐸) where 𝑂 = {𝑜!, … , 𝑜G} is a set 254 
of objects with each 𝑜H, an object that 𝑜H = {𝑐H!, 𝑐HI, … , 𝑐HF} 255 

where 𝑐HJ ∈ 	𝐶J , and 𝐸 ⊆ 𝑂 × 	𝑅 × 	𝑂  is a set of directed 256 

edges of the form (𝑜H , 𝑟, 𝑜J) where 𝑜H , 𝑜J ∈ 𝑂 and 𝑟 ∈ 	𝑅. For 257 

this scene graph, object property and relation are defined as 258 

the same as those of the questions (Table 1 and Table 2).  259 

This paper details the transformation of images from pe-260 

destrian video sequences into scene graphs via a three-step 261 
procedure based on the defined scene graph and object prop-262 

erty. Initially, a 3D convolution operation-based autoencoder, 263 

factoring in a time axis, determines the normality of the cor-264 

responding image. Subsequently, objects within images are 265 

identified where anomalies have been detected with Faster R-266 

CNN. Lastly, the detection outcome is produced through 267 
Graph R-CNN in conjunction with the original image. 268 

Faster R-CNN undertakes object detection for scene graph 269 

parsing. The model proposed integrates anomaly detection 270 

results from an autoencoder with constant curvature manifold 271 

and an image to detect objects, with an accompanying repre-272 

sentation of their normality. 273 
Graph R-CNN, a leading method among scene graph gen-274 

eration algorithms, successfully elucidates the relationships 275 

between objects more effectively. It employs a relationship 276 

proposition network (RePN) that efficiently manages second-277 

ary potential relationships between image objects and a graph 278 

convolutional network (GCN). In this paper, the images of 279 
pedestrian video frames are input into corresponding algo-280 

rithm models, trained with the VQA dataset, preserving valid 281 

information correlating to the predefined object properties. 282 

The resultant scene graph facilitates knowledge representa-283 

tion that can more distinctly express object relationships 284 

while safeguarding information on the objects. 285 

3.3 Neuro-Symbolic QA with Reinforcement 286 

In the proposed model, a question is translated into a se-287 

quence of programs {𝑝!, … , 𝑝"}  via an LSTM encoder-de-288 

coder structure. Scene graph traversing is performed using 289 

the corresponding translated program and the resultant scene 290 

graph from section 3.1. Each program operates on a set of 291 

nodes in the scene graph. For instance, the "scene" program 292 
returns all objects in the current scene. Programs other than 293 

"relation" and "scene" do not require any relational infor-294 

mation. Each of these objects in the set is processed by an "if-295 

else" operation, and the resulting output is calculated. 296 

Programs associated with relationships require infor-297 

mation about the relationships between objects. This model 298 
employs a method of searching through the edges of the scene 299 

graph. It verifies whether an edge, corresponding to a con-300 

nection for filtering, is connected to each node for a set of 301 

nodes that are used as input when the edge is present. Then, 302 

the program for connection proceeds by calculating a set of 303 

nodes comprised of target nodes and outputs it. This process 304 
is illustrated in Algorithm 2. Through this algorithm, logical 305 

reasoning for each program stage becomes feasible. 306 

In this paper, a two-stage procedure is implemented to train 307 

LSTM, with the aim of elucidating the mapping between a 308 

question and its corresponding program. Initially, a few 309 

ground truth question-program pairs are extracted from the 310 
training set to pretrain the model under direct supervision. 311 

Subsequently, the model is paired with a deterministic pro-312 

gram executor. Reinforcement learning is then employed to 313 

Algorithm 1: Anomaly Detection Training Process  
Data: hyperparameters 
Result: discriminator 𝐷, autoencoder 𝐴𝐸, encoder 𝑔, 
and decoder 𝑓 
for 𝑖 = 	1, . . . , 𝑀 do 

for 𝑗 = 	1, . . . , 𝑁 do 
Sample 𝑥 and 𝑥; form 𝑋 and 𝑋	 +	𝑁K 

    Sample 𝑧 from CCM 
    ℒ4 ←	ℒ4 	−

Lℒ&
N&

(𝑥, 𝑥;, 𝑧) 

    ℒOP ←	ℒOP 	−
Lℒ'(
N&

(𝑥) 

    ℒ3 ←	ℒ3 	−
Lℒ)
N)
(𝑥, 𝑥;) 

    ℒQ ←	ℒQ 	−
Lℒ*
N*
(𝑥, 𝑥;) 

    ℒ4 ←	ℒ4 	−
Lℒ&
N&

(𝑥, 𝑥;, 𝑧) 
end 

end 
return 𝑓, 𝑔 and 𝐷 

 



 

 

fine-tune the LSTM, utilizing a larger dataset of question-an-314 

swer pairs. Notably, only the accuracy of the execution result 315 

is used as the reward signal in this reinforcement learning 316 

phase. 317 

Employing reinforcement learning for question and answer 318 
pairs contributes to generating more precise responses to in-319 

quiries. The decision to respond to the input image and query 320 

serves as a reward signal 𝑟, wherein the value of 𝑟 − 𝑏 is 321 

propagated for model learning by establishing a baseline b to 322 

inhibit decay. The value of 𝑏 is initially set to zero and is sub-323 

sequently updated whenever a reward value manifests, shown 324 
as equation (9), thereby modulating the learning of extant 325 

models. 326 

  𝒃 ← Q𝟏 − 𝜶𝒅𝒆𝒄𝒂𝒚S𝒓 + 𝜶𝒅𝒆𝒄𝒂𝒚𝒃  (9) 327 

 328 

4 Experiments 329 

4.1 Real-World Pedestrian Video Dataset 330 

In order to evaluate the efficacy of the proposed method, we 331 

employ the UCSD pedestrian datasets, which are collected 332 

from stationary CCTV footage. This data comprises pedestri-333 

ans and various moving objects captured moving in both di-334 

rections. As in Table 1, the object attribute table generated 335 

from this data includes combinations of two to four-wheeled 336 

vehicles (bicycles, cars, skateboards, wheelchairs, carts, and 337 

trucks), along with various backgrounds (wood, roads, and 338 

grass).  339 

In this paper, question-program pairs are formulated based 340 

on the objects within an image. The program is comprised of 341 

a sequence of domain-specific languages, as specified in Ta-342 
ble 2, and each pair originates from a predefined template. 343 

The queries have been categorized into five types, each typi-344 

fied by its distinct properties. 345 

“Querying Attribute” refers to inquiries about an object's 346 

characteristics, including queries concerning the attributes of 347 

anomaly objects. “Compare Attribute” involves the compar-348 
ison of attributes between two objects and contains queries 349 

that can also determine anomaly attributes. “Exist” and 350 

“count” are demarcated as queries about the existence and 351 

quantity of specific objects, respectively. Lastly, “compare 352 

Number” is classified as a query that contrasts the number of 353 

objects across various sets. 354 

4.2 Question and Answering Performance 355 

Table 4 compares the performance of our method with the 356 

conventional question-answering methods, segregated by 357 

program type. In scenarios where image recognition using 358 

convolutional neural networks is coupled with question pro-359 

cessing using LSTM, and mapped using simple supervised 360 

learning, our method seldom misclassifies, exhibiting an ac-361 
curacy of 0.9971. This contrasts starkly with the considerably 362 

lower accuracy of 0.6457 when the number of objects is pre-363 

cisely specified in the table of perceived object properties. 364 

Furthermore, in complex environments such as pedestrian 365 

video sequences, our method, in combination with inference 366 

capabilities, outperforms the encoder-decoder approaches 367 
based on modular neural networks, achieving an accuracy of 368 

0.9991 against the latter's 0.9232.  369 

Algorithm 2: Scene Graph Traversing Algorithm 
Data: scene graph 𝐺	 = 	 {𝑂, 𝐸} and program sequence 
𝑃 = {𝑝!, 𝑝I, . . . , 𝑝G} 
Result: traversing result – answer to question 
for 𝑝H ∈ 𝑃 do 

if 𝑝H is “scene” do 
    𝑆. 𝑝𝑢𝑠ℎ(𝜙) 
else 
    if 𝑝H is in “relation” then 
        𝑂VW3 = 𝑆. 𝑝𝑜𝑝() 
        𝑂GXY = 𝜙 
        for 𝑜J ∈ 𝑂VW3 do 
            for 𝑒JZ ∈ 𝐸 where 𝑒JZ = 𝑜[𝑜Z������ do 
                if 𝑒Z is relation in 𝑝H then 
                    𝑂GXY = 𝑂GXY + {𝑒Z} 
                end 
            end 
        end 
        𝑆. 𝑝𝑢𝑠ℎ(𝑂GXY) 
    else 
        𝑆 = 𝑝H(𝑆) 
    end 
end 

end 
return 𝑆. 𝑝𝑜𝑝() 

 

Method Count Exist Compare 
number 

Compare 
attribute 

Query 
attribute 

Overall 
accuracy 

CNN-LSTM [Antol et al., 2015] 64.57% 87.44% 53.78% 77.47% 77.47% 72.15% 
Mask R-CNN 85.23% 92.93% 83.45% 90.68% 92.68% 88.99% 

Module network with Encoder-decoder 
 [Hu et al., 2017] 86.77% 96.61% 86.48% 96.51% 95.27% 92.32% 

Ours 99.71% 99.97% 99.96% 99.93% 99.98% 99.91% 
Table 4: 10-fold cross-validation of accuracy with other methods by query type. 



 

 

For every classification, our method exhibits the highest 370 

accuracy. Notably, our method achieves a remarkable accu-371 
racy of 0.9996 in the "compare number" classification, the  372 

most challenging category that records the lowest figure for 373 

all other algorithms. This demonstrates the potential of the 374 

neuro-symbolic approach in tackling problems that could 375 

yield varied and complex values, such as numerical compar-376 

ison, and affirms the role of the scene graph in bolstering this 377 
capability. In addition, we also report higher accuracy in 378 

"query attribute" and "count" categories, which can lead to 379 

complex results and require precise determination, respec-380 

tively. 381 

Table 5 shows the instances where questions and answers 382 

fail when employing data inclusive of object properties and 383 
locations, but succeed when scene graph data is employed. In 384 

cases where relational information is required for questions, 385 

misidentification of relationships frequently occurs based on 386 

data with object property and location. However, when the 387 

proposed method is adopted for image information represen-388 

tation, the relational information can be more accurately han-389 
dled even with more complex programs.  390 

5 Conclusions 391 

In this paper, we propose a neuro-symbolic visual question-392 
answering method tailored for pedestrian anomaly video se-393 

quences, which closely resemble real-world environments. 394 

This method is facilitated by defining object properties, rela-395 

tionships, and question coverage and incorporating a scene 396 

graph generator as well as an anomaly detector. The proposed 397 

method demonstrates considerable accuracy of 0.9978 across 398 
five types of queries. 399 

However, the proposed method's inference algorithm, de-400 

signed to map questions and answers, is implemented as a 401 

basic filter algorithm operation. This approach needs valida-402 

tion in the general image field, where object relationships are 403 

more complex than in pedestrian video sequences. Particu-404 
larly, as the emergence of various objects tends to complicate 405 

the scene graph, thereby increasing computational demand, a 406 

learning method that considers computational optimization 407 

will be required in the future work. 408 

Scene Query Question Program Representation Answer (P&L)/ 
Answer (Graph) 

 

Count 

What number 
of large normal 

persons are 
behind the 
small man? 

scene 
filter size[small] 

unique 
relate[behind] 

filter size[large] 
filter anomaly[normal] 

filter shape[person] 
count 

14/15 

 

Exist 

Are there any 
things in front 
of the small 

normal person? 

scene 
filter size[small] 

filter anomaly[normal] 
filter shape[person] 

unique 
relate[front] 

exist 

False / True 

 

Compare number 

Are there more 
humans on the 
left side of the 
scene than on 

the right? 

scene 
filter position[left] 
filter shape[person] 

scene 
filter position[right] 
filter shape[person] 

greater than 

True / False 

 

Count 

What number 
of large normal 

persons are 
behind the 
small man? 

scene 
filter size[small] 

unique 
relate[behind] 

filter size[large] 
filter anomaly[normal] 

filter shape[person] 
count 

7/8 

Table 5: Program representation and scene-graph for each case of correct response. 
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