
Abstract

Our approach to runtime optimization of heteroge-
neous systems using Reinforcement Learning (RL)
and neuro-symbolic Logical Neural Networks
(LNN) is described. We provide details of a method
for optimizing the runtime allocation of power and
processor resources in Heterogeneous System-on-
Chip (HSoC) applications to maximize the perfor-
mance/watt. We demonstrate promising results in
creating human interpretable and interactable AI
policy, learning with less data by incorporating do-
main knowledge, and use of logical reasoning to ex-
tend the optimization window beyond the training
set. HSoC register-transfer level (RTL) simulation
results are used to show the comparative advantage
of the neuro-symbolic policy implementation versus
state-of-the-art hardware power management.

1 Introduction
Runtime optimization in resource constrained heterogeneous
systems is an important research area across multiple do-
mains. Applications include real-time scheduling with system
constraints in High Performance Computing (HPC), Cloud
and Data centers, Heterogeneous System-on-Chip (HSoC);
routing in telecom networks, autonomous vehicles; process
control of industrial Digital Twins; and more. For example,
the main challenge for enabling parallel programming models
in next-generation heterogeneous multi-core SoCs is in
jointly optimizing both performance and power efficiency.
Standard heuristic rule-based scheduling and power manage-
ment techniques are inefficient in these applications due to
the wide range of workflow requirements to support; variable
configurations, power-frequency characteristics; and sto-
chasticity in task arrival times, processing times, network
congestion and deadlines. Recent work using AI methods of
Reinforcement Learning (RL) and Deep Neural Network
(DNN) based policy have shown promise in improving oper-
ating efficiency [Mandal et al., 2019; Zuckerman et al.,
2021]. However, these approaches share the common draw-
backs of deep learning methods, such as, requiring very large
number of training examples; rules learned cannot be ex-
tended to cases much beyond training examples; large model
sizes resulting in response times that are too slow for real-

time control; and a lack of human interpretability in the deci-
sions.

1.1 Neuro-Symbolic Approach
To address the challenges described above and meet the dis-
parate runtime optimization requirements of heterogeneous
systems, RL frameworks that utilize distributed intelligence
with the ability to learn hybrid neuro-symbolic policies, need
to be explored. The key to architecting this RL system lies in
the neuro-symbolic policy learning framework used within
each component (agent) of the distributed intelligence. The
recently proposed neuro-symbolic Logical-Neural-Networks
(LNNs) [Riegel et al., 2020; Chaudhury et al., 2021] provide
a constrained optimization framework, where the neurons be-
have as logical operatives without enforcing a specific struc-
ture for the learning function. Choosing LNNs as the differ-
entiable function approximators for rule induction allows the
learned policy to be interpretable and to easily incorporate
expert domain knowledge into the rule set. The ability of
LNNs to generate compact rules-based light weight policies,
unlike previous DNN based RL methods, enables fast re-
sponse times. In addition, LNNs allow a distributed intelli-
gent multi-agent system design by enabling logical inference
and predictive action based on partial observability. In safety
critical applications, RL policy based on LNNs can incorpo-
rate valuable features such as: guard rail safety constraints
formulated as symbolic representations; robust efficient
model training and optimization for uncertain environments
and rare events; and interpretable AI model decisions permit-
ting system control with human-in-the-loop.

1.2 Heterogeneous System-on-Chip Application
We use the example of a Heterogeneous SoC (HSoC) appli-
cation to illustrate a scalable method of performance and
power efficient runtime optimization using multi-agent RL
framework with LNN policy advisor. Figure 1 shows a heter-
ogeneous SoC with a diversity of processor tiles and a poten-
tial workflow graph that needs to be executed upon it. Pro-
cessing element (PE) tiles with similar functionality are de-
picted in the same colors. The optimization challenge illus-
trated in this example is to maximize the throughput of the
workflow graphs for random arrivals and deadlines, given a
constrained system power envelope. This requires optimizing

A Neuro-Symbolic Approach to Runtime Optimization in Resource Constrained
Heterogeneous Systems

Chitra Subramanian1, Sarath Swaminathan1, Miao Liu1, Mauricio Longinos2,

Aporva Amarnath1, Karthik Swaminathan1, Martin Cochet1, Kevin Fernández2 and Pradip Bose1
 1IBM Research

2IBM CIO Office
Correspondence: cksubram@us.ibm.com

the task scheduling to the appropriate processor tiles as well
as optimizing the power sharing between the tasks.
Therefore, the objective of this HSoC optimization problem
is to determine the allocation of power and processor re-
sources at runtime to maximize the system performance/watt.
Scheduling tasks to processing element (PE) tiles of a HSoC
requires response times of a few milliseconds, with a few
hundred micro-second power management (PMT) response
time for allocating optimal power to the PE tiles. We propose
that a multi-agent neuro-symbolic reinforcement learning
system that learns compact logical rules would be necessary
for an efficient control system that meets these tight timing
requirements. As the first step in developing such a system,
the goal of our present work is to demonstrate LNN rule op-
timized power sharing between PE tiles to maximize job
throughput provided the PE task assignments at runtime from
an external scheduler. In section 2 we discuss the problem
setup including the formulation, system variables, and RL
training implementation for learning optimal action. In sec-
tion 3 we provide results including details of LNN rule learn-
ing using RL, the resulting interpretable temporal neuro-sym-
bolic rules and simulated runtime inference including for a
state-of-the-art HSoC Integrated Circuit (IC) chip RTL.

2 Optimization Framework
2.1 Problem Formulation and System Variables

The HSoC is organized as a grid of PE tiles as in Figure 1,
and the goal is to maximize job throughput for a fixed maxi-
mum allowed HSoC power envelope, given the random arri-
val of jobs at runtime. Each job is composed of several tasks
that are connected by a directed acyclic workflow graph
(DAG) as shown in the example of Figure 1. At runtime, an
external scheduler assigns the incoming queued up tasks to
the fastest available PE tiles. Tasks which execute in parallel
on the HSoC, such as Task4 and Task3 in the example DAG,
need to share the total available power to stay within the max-
imum power constraint. The task completion time on any PE
tile has a non-linear inverse relationship to the power pro-
vided, determined by its frequency vs power characteristics.
To maximize job throughput, the power sharing between PEs
needs to be optimized so that tasks are efficiently processed
on their assigned PEs to minimize the job execution time, i.e.,
the DAG makespan. The PE power sharing allocation as a

percent of maximum allowed HSoC power is referred to as
‘Tokens’.

There are several variables in this system with design time,
runtime, and lifetime variability. Table1 shows these differ-
ent sources of system variation, categorized by their
timeframes and stochastic behaviors. Given the many degrees
of uncertainty, the training set required to capture all possible
system states for any purely neural (DNN) model is, there-
fore, explosively large. Neuro-symbolic LNN model’s ability
to learn while incorporating domain expert rules and the abil-
ity to use logical reasoning during inference time are vital to
reducing the training set and model size to make the optimi-
zation solution more tractable.

Our goal was to demonstrate the LNN capability to learn tem-
poral rules that are human interpretable and to obtain an RL
policy that is optimized for PE power sharing at runtime. We
therefore included the following critical factors: random
runtime variations in DAG arrival times and completion
deadlines, variable PE assignments to tasks based on a sched-
uler, and model-based variation of task completion time vs
power assigned for the PEs. In this first RL LNN study we
considered the design time variables to be a finite set to work
with and did not include any lifetime wear out.

2.2 RL Implementation

The LNN rule learning was done using an RL Gym Environ-
ment. Figure 2 shows the setup for RL LNN rule learning,
where the PE Tile agent learns optimal power sharing rules
based on variable DAGs and PE task assignment schedules
from an external scheduler. Each PE Tile has an independent

LNN power management (PMT) advisor that learns by per-
forming the action of requesting a discrete percentage of the
maximum HSoC power (Tokens) at every time step. Since
the PE Tile agents are independent and don’t interact with
each other, the learning was done for one PE Tile agent at a
time, considering all the other PE Tile agents to be part of the
HSoC environment for that purpose. In this setup, all the PE
Tile agents ultimately learn fully compatible LNN PMT pol-
icies. The system relied upon an existing underlying ‘Hard-
ware Power Management’ unit designed to actuate low-la-
tency PE power sharing based on state-of-the-art distributed
power management techniques [Shah et al., 2021]. However,
this hardware PMT unit was abstracted with ideal character-
istics for purposes of this LNN temporal rule learning setup.

Figure 3 shows the implementation of the LNN rule learning
system using the RL Gym environment. As described in Fig-
ure 2, the SoC Environment (SoC Env) is designed to mimic
the behavior of a simplified heterogeneous System-on-Chip
where one PE Tile is managed by the agent and all other tiles
by the environment. Each training episode consists of com-
pleting a single job or workflow DAG. The SoC Env keeps
track of the task assignment, progress of tasks, and power to-
ken distribution between tiles during the lifetime of a job. At
each time step the PE Tile agent takes the action of allocating
a discrete percentage of maximum allowed power for itself.
Reinforce algorithm and dense reward system with the re-
ward function based on completion time of all the tasks were
used for training. These aspects follow any standard RL pol-
icy training setup. The changes made for LNN-based RL
training are: (i) use of logical predicates and observations; (ii)
incorporating domain expert knowledge; (iii) control of ad-
missible actions to impose guard rails. Examples of logical
predicates include ones that define whether a task is assigned
to the agent’s PE Tile (‘TaskAssigned’), whether any parallel
tasks exist at that time step (‘SiblingTasks’), and whether par-
ent tasks have completed (‘ParentTaskCompleted’). Expert
knowledge about the features of the task within the DAG,
such as its contribution to the makespan critical path and pres-
ence or absence of other concurrent tasks, are provided dur-
ing training as an additional real valued predicate (‘Slack’).
Guard rail rules take care of edge cases such as forbidding the

agent from taking the action of allocating 0% power to itself
while processing a task or taking all 100% power while a sib-
ling task is active. These 3 aspects allow greater human inter-
action and control to reduce training time of LNN based pol-
icy and produce fully interpretable rules.

3 Results and Discussion

3.1 Learning LNN Model-Based Policy

The goal of the learned LNN policy was to determine the per-
cent share of the max power that the PE Tile agent should
allocate for itself to minimize the DAG makespan. The con-
tinuum of all possible values of power between 0% and 100%

was discretized into 10 equal intervals and the policy would
select one of them to take as the action at each time step. Dis-
tinct LNN rules were learned simultaneously during training,
i.e, NeedTokens_0 for 0% of power to the PE Tile, NeedTo-
kens_100 for 100% of power share, and NeedTokens_x for
x% of power share where 0 < x < 100. A Łukasiewicz logical
conjunction with weighted input predicates and negated pred-
icates was defined as the operator for LNN rule learning as
shown in Figure 4. Inductive Logic Programming (ILP) along
with double-description method of LNN rule learning [Sen et
al., 2022] was used to learn interpretable lifted First Order
Logic LNN rules. The weights learned are shown in Figure 5.
A weight threshold of 0.1 was used to filter out the irrelevant
predicates for each rule statement, resulting in the final rules
as shown in Figure 6.

The learned rules are straight forward to interpret. The PE
Tile agent allocates 0% power to the PE whenever its
‘ParentTasksCompleted’ predicate is NOT observed to be
logically True. This can occur either because the PE is wait-
ing for the parent tasks of its assigned task to complete, or it
has not been assigned a task and is idle. Under both condi-
tions the PE Tile is in standby mode and needs to be allocated
0% power, hence the learned rule for NeedTokens_0. On the
other hand, when a task is assigned to a PE Tile and its parent
tasks have completed, it needs to have power allocated for
task execution. If there are no sibling tasks to run in parallel,

all available HSoC power needs to be allocated to the PE for
minimizing the DAG makespan, hence the NeedToken_100
rule. However, when sibling tasks exist, the NeedTokens_x
rule is activated, and the ‘Slack’ predicate determines the op-
timal share of power to the PE Tile. As previously stated, the
‘Slack’ predicate takes on values based on pre-processed ex-
pert information for the assigned task’s features in the context
of its DAG. These ‘Slack’ predicate values range between 0
and 1 and determine the probabilistic activation for different
x% power selections. Therefore, the ‘Slack’ predicate can be
viewed as a family of activation curves for different x%
power allocations that the RL system can learn to choose
from under different system conditions.

We have thus successfully demonstrated the ability to learn
human interpretable LNN RL policy, incorporating domain
expert knowledge, and guard rail control of admissible ac-
tions to minimize training time. Figure 7 shows the RL re-
wards tracking versus training epoch. This shows steady state
rewards at only 200 epochs indicating quick LNN rule learn-
ing and the extendibility to unseen examples will be illus-
trated by the inference results next.

3.2 Simulated Runtime Inference Results

Table 2 contains the runtime job information provided by the
scheduler to the LNN power management agent within each
PE Tile. The scheduling information for a single 6-task-DAG

example is shown in the table. The ‘task tid’ column shows
the task number within the DAG and ‘task type’ column pro-
vides the task description. The ‘type’ and ‘id’ columns show
the assignment PE type and the PE Tile identification. The
‘current service time’ column provides the execution time of
the task assigned if the PE Tile is allocated maximum power.
The ‘dag type’ column has the DAG identification number
from the finite set of predetermined DAGs and the ‘dag id’ is
the job number. The ‘dag dtime’ is the DAG completion
deadline requirement and the ‘task sub deadline’ is the result-
ing pre-calculated task deadline requirement that is used to
calculate the ‘Slack’ predicate values. A single ‘Slack’ pred-
icate based on a criterion that maintains the pre-calculated
ideal ratio of ‘task sub deadline’ between parallel sibling
tasks was used for this illustration. The power sharing ratio
selected by the LNN policy therefore tends to provide more
power to speed up the sibling task assigned to a slower PE
while providing less power to the sibling that is assigned to a
fast PE in order to maintain the ideal ‘task sub deadline’ ratio

and minimize DAG makespan. This is the domain knowledge
input indicated by the ‘Slack’ predicate. The interpretation of
‘task parent ids’, ‘task arrival time’, ‘current job start time’
and ‘current job end time’ are straightforward. The ‘task pri-
ority’ information is not currently being used but is available
for future use.
At any given time step the input table only contains the infor-
mation for rows that were recently executed and the task to
PE assignments for a limited look ahead time step and not for
the entire DAG to reduce data storage and communication.
The PE Tile LNN PMT advisor makes runtime power alloca-
tion decisions at event time points at the start and completion
of any task in the system. For example, in the 6-task-DAG of
Figure 8 (left) with fft_accel_10 and gpu_8 as PE assign-
ments, the PMT decision event time points, assuming all
tasks are assigned full 100 tokens, shows a DAG completion
time of 250 cycles. The current Hardware Power Manage-
ment unit shares the maximum allowed HSoC power equally
among all the active PE Tiles without considering the impact

on task completion times and DAG makespan as shown in
Figure 8 (right). Since the reduced power allocation per task
results in slower completion times on tasks T_2, T_3, and
T_4, the overall DAG with power sharing takes an additional
42 cycles to complete at 292 cycles.
The simulated execution and power sharing selection for
learned LNN rules based PMT versus the current default
hardware PMT of the 5-task-DAG of Figure 1, is shown in
Table 3. In this case, based on the scheduler assignments,
Task 0 executes on the fft_accel_10 PE; followed by Tasks 3
and 4 executing in parallel on the fft_accel_10 and gpu_8 PEs
respectively; followed by Tasks 3 and 2 executing in parallel
on the fft_accel_10 and cpu_core_0 PEs respectively; and fi-
nally Task 1 executing on fft_accel_10 PE to complete the
DAG. The optimized power sharing decisions using the LNN
PMT case results in a better DAG makespan of 1165 cycles
relative to current hardware PMT which required 1222 cycles
to complete the DAG. Eliminating minor single cycle PMT
delays seen during execution at event time points (such as cy-
cles 10, 279 and 857) would produce a more accurate com-
parison. However, the magnitude of improvement in DAG
makespan is dependent on the nature of the DAG, the com-
ponent task execution time characteristics, and the assigned
PEs. Therefore, the results in Table 3 should only be consid-
ered qualitatively as demonstrated proof of concept for ad-
vantage of LNN PMT over current state-of-the-art hardware
PMT technique.
Additionally, we verified LNN PMT advantage in DAG
makespan over the current hardware PMT using RTL level
simulations of our recent HSoC IC chip for a 3-task-DAG as

shown in Figure 9. Setting the maximum allowed IC power
consumption to 20mW, the default hardware PMT allocated
the same 10mW of power at the start to the parallel tasks as-
signed to FFT_64 and FFT_256 PEs. In contrast, the LNN
rules based PMT allocated 15mW to the task executing on
FFT_256 PE and the remaining 5mW to the task executing
on FFT_64 PE. The LNN rules based PMT resulted in earlier
DAG completion time of 105.405usec whereas the default
hardware PMT required 108.575usec. As before, these results
represent proof of concept validation only and exact magni-
tude of LNN improvements depend on the DAG and PE char-
acteristics. Also, the minor delays seen at event edges in the
LNN PMT simulation can be eliminated through better de-
sign optimization.

4 Summary
We have demonstrated promising results in the application of
neuro-symbolic techniques to power management of hetero-
geneous systems as shown in this System-on-Chip use case.
We have successfully shown for the first time: (i) Human-
interpretable temporal rule learning for real-time optimiza-
tion using neuro-symbolic LNN; (ii) Incorporation of domain
knowledge and guard rail constraints to minimize training;
(iii) Learned logical rules that allow operation extension well
beyond the training set. While we have only been working
with toy example DAGs so far to illustrate these advantages
of neuro-symbolic methods, we are currently working on real
application workload demonstrations. Our plans include ap-
plying probabilistic predictive action and joint scheduling
and power optimization using neuro-symbolic methods next.

Acknowledgements
This research was developed with funding from the Defense
Advanced Research Projects Agency (DARPA). The views,
opinions and/or other findings expressed are those of the au-
thors and should not be interpreted as representing the official
views or policies of the Department of Defense or the U.S.
Government. Distribution Statement A: Approved for Public
Release, Distribution Unlimited.

References
[Chaudhury et al., 2021] S. Chaudhury, P. Sen, M. Ono, D.

Kimura, M. Tatsubori, A. Munawar, Neuro-Symbolic Ap-
proaches for Text-Based Policy Learning, Proceedings of
the 2021 Conference on Empirical Methods in Natural
Language Processing.

[Mandal et al., 2019] S. K. Mandal, G. Bhat, C. A. Patil, J. R.
Doppa, P. P. Pande and U. Y. Ogras, Dynamic Resource
Management of Heterogeneous Mobile Platforms via Im-
itation Learning, IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, vol. 27, no. 12, pp. 2842-
2854, Dec. 2019.

[Riegel et al., 2020] R. Riegel, A. Gray, F. Luus, N. Khan, N.
Makondo, I. Y. Akhalwaya, H. Qian, R. Fagin, F.
Barahona, U. Sharma, S. Ikbal, H. Karanam, S. Neelam,
A. Likhyani, S. Srivastava, Logical Neural Networks,
arXiv:2006.13155v1 (2020).

[Sen et al., 2022] P. Sen, Breno W. S. R. de Carvalho, R. Rie-
gel, A. Gray, Neuro-Symbolic Inductive Logic Program-
ming with Logical Neural Networks, AAAI, 2022.

[Shah et al., 2021] P. Shah, R. G. Shenoy, V. Srinivasan, P.
Bose, A. Buyuktosunoglu, TokenSmart: Distributed,
Scalable Power Management in the Many-Core Era, IEEE
Computer Architecture Letters, Vol. 20, No. 1, Jan 2021.

[Zuckerman et al., 2021] J. Zuckerman, D. Giri, J. Kwon, P.
Mantovani, L. P. Carloni, Cohmeleon: Learning-Based
Orchestration of Accelerator Coherence in Heterogeneous
SoCs, 54th IEEE/ACM International Symposium on Mi-
croarchitecture (MICRO 2021).

